Beverloo's scaling law can describe the flow rate of grains discharging from hoppers. In this paper, we show that the Beverloo's scaling law is valid for varying material parameters. The flow rates from a hopp...Beverloo's scaling law can describe the flow rate of grains discharging from hoppers. In this paper, we show that the Beverloo's scaling law is valid for varying material parameters. The flow rates from a hopper with different hopper and orifice sizes(D, D_0) are studied by running large-scale simulations. When the hopper size is fixed, the numerical results show that Beverloo's law is valid even if the orifice diameter is very large and then the criteria for this law are discussed.To eliminate the effect of walls, it is found that the criteria can be suggested as D-D_0≥ 40 d or D/D_0≥ 2. Interestingly,it is found that there is still a scaling relation between the flow rate and orifice diameter if D/D_0 is fixed and less than 2.When the orifice diameter is close to the hopper size, the velocity field changes and the vertical velocities of grains above the free fall region are much larger. Then, the free fall arch assumption is invalid and Beverloo's law is inapplicable.展开更多
We experimentally investigate the effect of the hopper angle on the flow rate of grains discharged from a twodimensional horizontal hopper on a conveyor belt.The flow rate grows with the hopper angle,and finally reach...We experimentally investigate the effect of the hopper angle on the flow rate of grains discharged from a twodimensional horizontal hopper on a conveyor belt.The flow rate grows with the hopper angle,and finally reaches a plateau.The curve feature appears to be similar for different orifice widths and conveyor belt-driven velocities.On the basis of an empirical law of flow rate for a flat-bottom hopper,we propose a modified equation to describe the relation between the flow rate and hopper angle,which is in a good agreement with the experimental results.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11705256 and 11605264)
文摘Beverloo's scaling law can describe the flow rate of grains discharging from hoppers. In this paper, we show that the Beverloo's scaling law is valid for varying material parameters. The flow rates from a hopper with different hopper and orifice sizes(D, D_0) are studied by running large-scale simulations. When the hopper size is fixed, the numerical results show that Beverloo's law is valid even if the orifice diameter is very large and then the criteria for this law are discussed.To eliminate the effect of walls, it is found that the criteria can be suggested as D-D_0≥ 40 d or D/D_0≥ 2. Interestingly,it is found that there is still a scaling relation between the flow rate and orifice diameter if D/D_0 is fixed and less than 2.When the orifice diameter is close to the hopper size, the velocity field changes and the vertical velocities of grains above the free fall region are much larger. Then, the free fall arch assumption is invalid and Beverloo's law is inapplicable.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11475018 and 11974044)the National Key Research and Development Program of China(Grant 2016YFC1401001)。
文摘We experimentally investigate the effect of the hopper angle on the flow rate of grains discharged from a twodimensional horizontal hopper on a conveyor belt.The flow rate grows with the hopper angle,and finally reaches a plateau.The curve feature appears to be similar for different orifice widths and conveyor belt-driven velocities.On the basis of an empirical law of flow rate for a flat-bottom hopper,we propose a modified equation to describe the relation between the flow rate and hopper angle,which is in a good agreement with the experimental results.