The necessary and sufficient conditions and an algorithm to reach continuity between adjacent Bézier patches are presented. The effects of shape parameters for surface connection of G4 geometric continuity are in...The necessary and sufficient conditions and an algorithm to reach continuity between adjacent Bézier patches are presented. The effects of shape parameters for surface connection of G4 geometric continuity are investigated in detail. The algorithm can be generalized directly to the case of surface joining with higher order geometric continuity. It has important applications in surface modeling and surface joining.展开更多
A Bezier interpolation approach is proposed which uses local generation of endpoint slopes and forces the curve and the surface to pass through an arbitrarily specified point to control and modify the shape of curve a...A Bezier interpolation approach is proposed which uses local generation of endpoint slopes and forces the curve and the surface to pass through an arbitrarily specified point to control and modify the shape of curve and surface, making the result satisfactory.展开更多
According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a k...According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a kind of sufficient conditions of G1 continuity are developed, and a kind of sufficient conditions of G1 continuity among N(N>2) patch B-spline surfaces meeting at a common corner are given at the end.展开更多
Smoothly stitching multiple surfaces mainly represented by B-spline or NURBS together is an extremely important issue in complex surfaces modeling and reverse engineering. In recent years, a lot of progress has been m...Smoothly stitching multiple surfaces mainly represented by B-spline or NURBS together is an extremely important issue in complex surfaces modeling and reverse engineering. In recent years, a lot of progress has been made in smooth join of non-trimmed surface patches, while there has been seldom research on smoothly stitching trimmed surface patches together. This paper studies the problem of global continuity adjustment, damaged hole repair and local shape optimization for complex trimmed surface model, and presents a uniform scheme to deal with continuity adjustment of trimmed surfaces and geometric repair of local broken region. Constrained B-spline surface refitting technique and trim calculation are first utilized to achieve global G^1 continuity, and then local shape optimization functional is adopted to reduce fitting error and improve local quality of refitted surface patch. The proposed approach is applied to a discontinuity ship hull surface model with an irregular hole, and the result demonstrates the validation of our method. Furthermore, on the premise of global continuity, the proposed locally repairing damaged surface model provides a better foundation for following research work, such as topology recovery technique for complex surface model after geometric repair.展开更多
An application of techniques is presented to construct G ̄1 smooth surfaces by using acombination of the rectangular and triangular Bezier patches of degree as low as possible. TheG ̄1 smooth surfaces have the local p...An application of techniques is presented to construct G ̄1 smooth surfaces by using acombination of the rectangular and triangular Bezier patches of degree as low as possible. TheG ̄1 smooth surfaces have the local property and interpolate the given data and inherit thetopology imposed by the given space convex quadrilateral partition and triangulation. The papergeneralizes current approaches for assembling of rectangular and triangular patches.展开更多
文摘The necessary and sufficient conditions and an algorithm to reach continuity between adjacent Bézier patches are presented. The effects of shape parameters for surface connection of G4 geometric continuity are investigated in detail. The algorithm can be generalized directly to the case of surface joining with higher order geometric continuity. It has important applications in surface modeling and surface joining.
文摘A Bezier interpolation approach is proposed which uses local generation of endpoint slopes and forces the curve and the surface to pass through an arbitrarily specified point to control and modify the shape of curve and surface, making the result satisfactory.
文摘According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a kind of sufficient conditions of G1 continuity are developed, and a kind of sufficient conditions of G1 continuity among N(N>2) patch B-spline surfaces meeting at a common corner are given at the end.
基金supported by National Natural Science Foundation of China (Grant No.50575098)
文摘Smoothly stitching multiple surfaces mainly represented by B-spline or NURBS together is an extremely important issue in complex surfaces modeling and reverse engineering. In recent years, a lot of progress has been made in smooth join of non-trimmed surface patches, while there has been seldom research on smoothly stitching trimmed surface patches together. This paper studies the problem of global continuity adjustment, damaged hole repair and local shape optimization for complex trimmed surface model, and presents a uniform scheme to deal with continuity adjustment of trimmed surfaces and geometric repair of local broken region. Constrained B-spline surface refitting technique and trim calculation are first utilized to achieve global G^1 continuity, and then local shape optimization functional is adopted to reduce fitting error and improve local quality of refitted surface patch. The proposed approach is applied to a discontinuity ship hull surface model with an irregular hole, and the result demonstrates the validation of our method. Furthermore, on the premise of global continuity, the proposed locally repairing damaged surface model provides a better foundation for following research work, such as topology recovery technique for complex surface model after geometric repair.
文摘An application of techniques is presented to construct G ̄1 smooth surfaces by using acombination of the rectangular and triangular Bezier patches of degree as low as possible. TheG ̄1 smooth surfaces have the local property and interpolate the given data and inherit thetopology imposed by the given space convex quadrilateral partition and triangulation. The papergeneralizes current approaches for assembling of rectangular and triangular patches.