This paper proposes and applies a method to sort two-dimensional control points of triangular Bezier surfaces in a row vector. Using the property of bivariate Jacobi basis functions, it further presents two algorithms...This paper proposes and applies a method to sort two-dimensional control points of triangular Bezier surfaces in a row vector. Using the property of bivariate Jacobi basis functions, it further presents two algorithms for multi-degree reduction of triangular Bezier surfaces with constraints, providing explicit degree-reduced surfaces. The first algorithm can obtain the explicit representation of the optimal degree-reduced surfaces and the approximating error in both boundary curve constraints and corner constraints. But it has to solve the inversion of a matrix whose degree is related with the original surface. The second algorithm entails no matrix inversion to bring about computational instability, gives stable degree-reduced surfaces quickly, and presents the error bound. In the end, the paper proves the efficiency of the two algorithms through examples and error analysis.展开更多
This paper introduces the algebraic property of bivariate orthonormal Jacobi polynomials into geometric approximation. Based on the latest results on the transformation formulae between bivariate Bernstein polynomials...This paper introduces the algebraic property of bivariate orthonormal Jacobi polynomials into geometric approximation. Based on the latest results on the transformation formulae between bivariate Bernstein polynomials and Jacobi polynomials, we naturally deduce a novel algorithm for multi-degree reduction of triangular B^zier surfaces. This algorithm possesses four characteristics: ability of error forecast, explicit expression, less time consumption, and best precision. That is, firstly, whether there exists a multi-degree reduced surface within a prescribed tolerance is judged beforehand; secondly, all the operations of multi-degree reduction are just to multiply the column vector generated by sorting the series of the control points of the original surface in lexicographic order by a matrix; thirdly, this matrix can be computed at one time and stored in an array before processing degree reduction; fourthly, the multi-degree reduced surface achieves an optimal approximation in the norm L2. Some numerical experiments are presented to validate the effectiveness of this algorithm, and to show that the algorithm is applicable to information processing of products in CAD system.展开更多
Degree reduction of parametric curves and surfaces is an important process in the exchange of product model data between various CAD systems. In this paper the degenerate conditions of triangular Bezier surface patch...Degree reduction of parametric curves and surfaces is an important process in the exchange of product model data between various CAD systems. In this paper the degenerate conditions of triangular Bezier surface patches are derived. The degenerate conditions and constrained optimization methods are used to develop a degree reduction method for triangular Bezier surface patches. The error in the degree reduction of a triangular Bezier surface is also shown to depend on some geometric invariants which decrease exponentially in the subdivision process. Therefore, the degree reduction method can be combined with a subdivision algorithm to generate lower degree approximations which are within some preset error tolerance.展开更多
基金Supported by the National Natural Science Foundation of China (6087311160933007)
文摘This paper proposes and applies a method to sort two-dimensional control points of triangular Bezier surfaces in a row vector. Using the property of bivariate Jacobi basis functions, it further presents two algorithms for multi-degree reduction of triangular Bezier surfaces with constraints, providing explicit degree-reduced surfaces. The first algorithm can obtain the explicit representation of the optimal degree-reduced surfaces and the approximating error in both boundary curve constraints and corner constraints. But it has to solve the inversion of a matrix whose degree is related with the original surface. The second algorithm entails no matrix inversion to bring about computational instability, gives stable degree-reduced surfaces quickly, and presents the error bound. In the end, the paper proves the efficiency of the two algorithms through examples and error analysis.
基金Supported by the National Grand Fundamental Research 973 Program of China (Grant No. 2004CB719400)the National Natural Science Foun-dation of China (Grant Nos. 60673031 and 60333010)the National Natural Science Foundation for Innovative Research Groups (Grant No. 60021201)
文摘This paper introduces the algebraic property of bivariate orthonormal Jacobi polynomials into geometric approximation. Based on the latest results on the transformation formulae between bivariate Bernstein polynomials and Jacobi polynomials, we naturally deduce a novel algorithm for multi-degree reduction of triangular B^zier surfaces. This algorithm possesses four characteristics: ability of error forecast, explicit expression, less time consumption, and best precision. That is, firstly, whether there exists a multi-degree reduced surface within a prescribed tolerance is judged beforehand; secondly, all the operations of multi-degree reduction are just to multiply the column vector generated by sorting the series of the control points of the original surface in lexicographic order by a matrix; thirdly, this matrix can be computed at one time and stored in an array before processing degree reduction; fourthly, the multi-degree reduced surface achieves an optimal approximation in the norm L2. Some numerical experiments are presented to validate the effectiveness of this algorithm, and to show that the algorithm is applicable to information processing of products in CAD system.
文摘Degree reduction of parametric curves and surfaces is an important process in the exchange of product model data between various CAD systems. In this paper the degenerate conditions of triangular Bezier surface patches are derived. The degenerate conditions and constrained optimization methods are used to develop a degree reduction method for triangular Bezier surface patches. The error in the degree reduction of a triangular Bezier surface is also shown to depend on some geometric invariants which decrease exponentially in the subdivision process. Therefore, the degree reduction method can be combined with a subdivision algorithm to generate lower degree approximations which are within some preset error tolerance.