In this paper, we present a fast and fraction free procedure for computing the inertia of Bezout matrix and we can determine the numbers of different real roots and different pairs of conjugate complex roots of a pol...In this paper, we present a fast and fraction free procedure for computing the inertia of Bezout matrix and we can determine the numbers of different real roots and different pairs of conjugate complex roots of a polynomial equation with integer coefficients quickly based on this result.展开更多
The state space representation of the Bezout identity for generalized systems proposed by (Wang and Balas, 1989) is discussed again. A more concise way of description and proof is presented and the physical signific...The state space representation of the Bezout identity for generalized systems proposed by (Wang and Balas, 1989) is discussed again. A more concise way of description and proof is presented and the physical significance of the result in is also analyzed. Thus, our work is of independent interest.展开更多
In a factorial ring, we can define the p.g.c.d. of two elements (defined to the nearest unit) and the notion of prime elements between them. More generally, Bezout’s identity characterizes two prime elements in a mai...In a factorial ring, we can define the p.g.c.d. of two elements (defined to the nearest unit) and the notion of prime elements between them. More generally, Bezout’s identity characterizes two prime elements in a main ring. A ring that satisfies the property of the theorem is called a Bezout ring. We have given some geometry theorems that can be proved algebraically, although the methods of geometry and, in particular, of projective geometry are by far the most beautiful. Most geometric problems actually involve polynomial equations and can be translated into the language of polynomial ideals. We have given a few examples of a different nature without pretending to make a general theory.展开更多
文摘In this paper, we present a fast and fraction free procedure for computing the inertia of Bezout matrix and we can determine the numbers of different real roots and different pairs of conjugate complex roots of a polynomial equation with integer coefficients quickly based on this result.
文摘The state space representation of the Bezout identity for generalized systems proposed by (Wang and Balas, 1989) is discussed again. A more concise way of description and proof is presented and the physical significance of the result in is also analyzed. Thus, our work is of independent interest.
文摘In a factorial ring, we can define the p.g.c.d. of two elements (defined to the nearest unit) and the notion of prime elements between them. More generally, Bezout’s identity characterizes two prime elements in a main ring. A ring that satisfies the property of the theorem is called a Bezout ring. We have given some geometry theorems that can be proved algebraically, although the methods of geometry and, in particular, of projective geometry are by far the most beautiful. Most geometric problems actually involve polynomial equations and can be translated into the language of polynomial ideals. We have given a few examples of a different nature without pretending to make a general theory.