In this work,samples consisting of BiVO4 with exposed(040)facets coupled with Bi2S3(Bi2S3/BiVO4)were prepared through a one-pot hydrothermal method,using ethylenediaminetetraacetic acid as directing agent and L-cystei...In this work,samples consisting of BiVO4 with exposed(040)facets coupled with Bi2S3(Bi2S3/BiVO4)were prepared through a one-pot hydrothermal method,using ethylenediaminetetraacetic acid as directing agent and L-cysteine as sulfur source and soft template.X-ray diffraction,field emission scanning electron microscopy,and high-resolution transmission electron microscopy measurements indicated that the Bi2S3 content had a significant influence on the growth of(040)and(121)facets as well as on the morphology of the Bi2S3/BiVO4 samples.When the Bi2S3 content reached 1 mmol,the Bi2S3/BiVO4 samples exhibited a peony-like morphology.The results of transient photocurrent tests and electrochemical impedance spectroscopy measurements confirmed that a more effective charge separation and a faster interfacial charge transfer occurred in Bi2S3/BiVO4 than BiVO4.The enhanced photocatalytic activity of the Bi2S3/BiVO4 samples could be attributed to the improved absorption capability in the visible light region and the enhanced electron-hole pair separation efficiency due to the formation of the Bi2S3/BiVO4 heterostructure.In addition,the Bi2S3/BiVO4 samples showed relative stability and reusability.The simple method presented in this work could be used to fabricate composite photocatalysts with high activity for different applications,such as photocatalytic degradation of organic pollutants,photocatalytic splitting of water,and photocatalytic reduction of carbon dioxide.展开更多
In recent years,the excessive use of antibiotics has become a serious problem for human health.BiV04 regarded as one of the most promising visible-light-driven photocatalysts was used to degrade the antibiotics.In thi...In recent years,the excessive use of antibiotics has become a serious problem for human health.BiV04 regarded as one of the most promising visible-light-driven photocatalysts was used to degrade the antibiotics.In this paper,we fabricated Bi/BiV04 plasmonic photocatalysts which enhanced the photocatalytic activity of BiV04 for degradation of tetracycline(TC)antibiotic.The Bi/BiV04 photocatalysts were characterized by X-ray diffraction,X-ray photoelectron spectroscopy,scanning electron microscopy,transmission electron microscopy and high-resolution transmission electron microscopy.In addition,the photocatalytic experiment results show that the 0.04-Bi/BiVO4 sample has the best photocatalytic activity for 2 times than the pure BiV04 photocatalyst.The cycle experiments,after four repetitions of the experiments,showed the sample still maintained a high photocatalytic activity.Finally,the photocatalytic reaction mechanism was also studied by free radical capture experiments and electron paramagnetic resonance spectroscopy.展开更多
Streptomycin(STR)plays an essential role in bacterial infection treatments.Selectivity and sensitivity of photoelectrochemical(PEC)sensors are the two most important parameters,which can be measured using the photosen...Streptomycin(STR)plays an essential role in bacterial infection treatments.Selectivity and sensitivity of photoelectrochemical(PEC)sensors are the two most important parameters,which can be measured using the photosensitivity of its active material.We prepared a novel PEC sensor to detect STR using Bi/BiVO4/LDH(layered double hydroxides)heterostructures as an active material,which is photoactive in the visible light wavelength range.The simultaneous presence of LDH and Bi/BiVO4 enhanced the material photocurrent response,which was linear to the STR concentrations in the 0.01–500 nmol/L range.The STR detection limit by this sensor was 0.0042 nmol/L.Our novel PEC-based sensing strategy includes using an ultra-sensitive and highly selective sensor for STR detection.Additionally,the two-pot synthesis of Bi/BiVO4/LDH developed in this work is environmentally friendly.展开更多
基金supported by the National Natural Science Foundation of China(21407059,61308095)Science Development Project of Jilin Province,China(20130522071JH,20130102004JC,20140101160JC)~~
文摘In this work,samples consisting of BiVO4 with exposed(040)facets coupled with Bi2S3(Bi2S3/BiVO4)were prepared through a one-pot hydrothermal method,using ethylenediaminetetraacetic acid as directing agent and L-cysteine as sulfur source and soft template.X-ray diffraction,field emission scanning electron microscopy,and high-resolution transmission electron microscopy measurements indicated that the Bi2S3 content had a significant influence on the growth of(040)and(121)facets as well as on the morphology of the Bi2S3/BiVO4 samples.When the Bi2S3 content reached 1 mmol,the Bi2S3/BiVO4 samples exhibited a peony-like morphology.The results of transient photocurrent tests and electrochemical impedance spectroscopy measurements confirmed that a more effective charge separation and a faster interfacial charge transfer occurred in Bi2S3/BiVO4 than BiVO4.The enhanced photocatalytic activity of the Bi2S3/BiVO4 samples could be attributed to the improved absorption capability in the visible light region and the enhanced electron-hole pair separation efficiency due to the formation of the Bi2S3/BiVO4 heterostructure.In addition,the Bi2S3/BiVO4 samples showed relative stability and reusability.The simple method presented in this work could be used to fabricate composite photocatalysts with high activity for different applications,such as photocatalytic degradation of organic pollutants,photocatalytic splitting of water,and photocatalytic reduction of carbon dioxide.
基金Supported by the National Natural Science Foundation of China(21522603,21503142,21671083)Six Talent Peaks Project in Jiangsu Province(XCL-025)+1 种基金the China Postdoctoral Science Foundation(2017M611720)the Excellent Youth Foundation of Jiangsu Scientific Committee(BK20170526).
文摘In recent years,the excessive use of antibiotics has become a serious problem for human health.BiV04 regarded as one of the most promising visible-light-driven photocatalysts was used to degrade the antibiotics.In this paper,we fabricated Bi/BiV04 plasmonic photocatalysts which enhanced the photocatalytic activity of BiV04 for degradation of tetracycline(TC)antibiotic.The Bi/BiV04 photocatalysts were characterized by X-ray diffraction,X-ray photoelectron spectroscopy,scanning electron microscopy,transmission electron microscopy and high-resolution transmission electron microscopy.In addition,the photocatalytic experiment results show that the 0.04-Bi/BiVO4 sample has the best photocatalytic activity for 2 times than the pure BiV04 photocatalyst.The cycle experiments,after four repetitions of the experiments,showed the sample still maintained a high photocatalytic activity.Finally,the photocatalytic reaction mechanism was also studied by free radical capture experiments and electron paramagnetic resonance spectroscopy.
基金supported by Key projects of science and technology research in Hebei Higher Education Institutions(Nos.ZD2018311,ZD2020417)Local science and technology development fund projects guided by the Central Government(No.206Z1402G)+1 种基金Science and Technology Research Project of Colleges and Universities in Hebei Province(No.BJ2019203)Xingtai Science and Technology Program(Nos.2018ZC031,2018ZC227,2019ZZ023,2019ZX07).
文摘Streptomycin(STR)plays an essential role in bacterial infection treatments.Selectivity and sensitivity of photoelectrochemical(PEC)sensors are the two most important parameters,which can be measured using the photosensitivity of its active material.We prepared a novel PEC sensor to detect STR using Bi/BiVO4/LDH(layered double hydroxides)heterostructures as an active material,which is photoactive in the visible light wavelength range.The simultaneous presence of LDH and Bi/BiVO4 enhanced the material photocurrent response,which was linear to the STR concentrations in the 0.01–500 nmol/L range.The STR detection limit by this sensor was 0.0042 nmol/L.Our novel PEC-based sensing strategy includes using an ultra-sensitive and highly selective sensor for STR detection.Additionally,the two-pot synthesis of Bi/BiVO4/LDH developed in this work is environmentally friendly.