Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi...Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.展开更多
In this paper,dendritic Bi film electrodes with porous structure had successfully been prepared on glassy carbon electrode using a constant current electrolysis method based on hydrogen bubble dynamic templates.The el...In this paper,dendritic Bi film electrodes with porous structure had successfully been prepared on glassy carbon electrode using a constant current electrolysis method based on hydrogen bubble dynamic templates.The electrode prepared using a large applied current density showed an increased internal electroactive area and a significantly improved electrochemical performance.The analytical utility of the prepared dendritic Bi film electrodes for the determination of Pb(Ⅱ)and Cd(Ⅱ)in the range of 5–50 μg·L^(-1)were presented in combination with square wave stripping voltammetry in model solution.Compared with non-porous Bi film electrode,the dendritic Bi film electrode exhibited higher sensitivity and lower detection limit.The prepared Bi film electrode with dendritic structure was also successfully applied to real water sample analysis.展开更多
A new method for preparing chemically modified gold electrode by anchoring thionine to self-assembled bi - (2 -aminoethyl) -aminodithiocarboxyl acid(BANTC) monolayers through coordination with Cu2+ is described. This...A new method for preparing chemically modified gold electrode by anchoring thionine to self-assembled bi - (2 -aminoethyl) -aminodithiocarboxyl acid(BANTC) monolayers through coordination with Cu2+ is described. This thionine modified electrode exhibits two-new redox couples.Two protons were involved in the electrochemical process undergone by the couple I in the pH range of 5.0-10.0. The apparent surface electron transfer rate constant is about 0.050s-1.展开更多
The earth-abundant magnesium metal is a kind of promising anode material due to its low reduction potential (-2.356V vs. SHE), high volumetric and gravimetric specific capacities of 3882 mAh cm-3 and 2234 mAh g_1 resp...The earth-abundant magnesium metal is a kind of promising anode material due to its low reduction potential (-2.356V vs. SHE), high volumetric and gravimetric specific capacities of 3882 mAh cm-3 and 2234 mAh g_1 respectively [1]. Moreover, the magnesium anode shows high safety due to the non-dentritic electrodeposition mechanism during cycling, which is related to the strong Mg-Mg bonding and the consequent high energy barrier between the crystal boundaries of different crystal orientation [2].展开更多
为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络...为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络。将脑电信号采集电极位置映射到二维矩阵中,采集信号作为通道,构成三维数据;将得到的三维数据输入到时空Inception残差注意力卷积网络之中,提取时空信息;将得到的特征输入到全连接层进行分类;将Inception结构引入脑电情绪识别领域,实现多尺度特征提取,并将电极映射到矩阵之中,保留电极位置信息,使用时空Inception残差注意力网络从时空两个维度获取脑电相关信息。实验表明,使用该模型对DEAP数据集进行情绪四分类可得到93.71%的准确度,相较于对比模型,识别精度提高了10%~20%。提出的模型在脑电信号情绪识别领域具有优良性能。展开更多
铁铬氧化还原液流电池(ICRFB)是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质。然而,ICRFB存在Cr^(3+)/Cr^(2+)电化学活性低、负极易产生严重的析氢反应(HER)等问题。本文报道了一种简单的...铁铬氧化还原液流电池(ICRFB)是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质。然而,ICRFB存在Cr^(3+)/Cr^(2+)电化学活性低、负极易产生严重的析氢反应(HER)等问题。本文报道了一种简单的合成策略,即通过自聚合和湿化学还原方法结合煅烧处理,在氮掺杂石墨毡(GF)表面沉积了非晶态铋(Bi)纳米颗粒(NPs),其作为ICRFB的负极材料时可展示出高效的电化学性能。生成的BiNPs与H+形成中间体,极大地抑制了HER副反应。此外,Bi的引入和GF表面的N掺杂通过协同作用显著提高了Fe^(2+)/Fe^(3+)和Cr^(3+)/Cr^(2+)的电化学活性,降低了电荷传递电阻,提高了反应传质速率。在不同的电流密度下,经25次循环,库仑效率仍高达97.7%。在60.0 mA cm^(-2)电流密度下,能量效率达到85.8%,超过了许多其他报道的材料。循环100次后容量达到862.7 mAh/L,约为GF的5.3倍。展开更多
基金supported by the National Natural Science Foundation of China(52172239)Project of State Key Laboratory of Environment-Friendly Energy Materials(SWUST,Grant Nos.22fksy23 and 18ZD320304)+3 种基金the Frontier Project of Chengdu Tianfu New Area Institute(SWUST,Grand No.2022ZY017)Chongqing Talents:Exceptional Young Talents Project(Grant No.CQYC201905041)Natural Science Foundation of Chongqing China(Grant No.cstc2021jcyj-jqX0031)Interdiscipline Team Project under auspices of“Light of West”Program in Chinese Academy of Sciences(Grant No.xbzg-zdsys-202106).
文摘Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.
基金Supported by the National Natural Science Foundation of China(51472073,51201058)
文摘In this paper,dendritic Bi film electrodes with porous structure had successfully been prepared on glassy carbon electrode using a constant current electrolysis method based on hydrogen bubble dynamic templates.The electrode prepared using a large applied current density showed an increased internal electroactive area and a significantly improved electrochemical performance.The analytical utility of the prepared dendritic Bi film electrodes for the determination of Pb(Ⅱ)and Cd(Ⅱ)in the range of 5–50 μg·L^(-1)were presented in combination with square wave stripping voltammetry in model solution.Compared with non-porous Bi film electrode,the dendritic Bi film electrode exhibited higher sensitivity and lower detection limit.The prepared Bi film electrode with dendritic structure was also successfully applied to real water sample analysis.
文摘A new method for preparing chemically modified gold electrode by anchoring thionine to self-assembled bi - (2 -aminoethyl) -aminodithiocarboxyl acid(BANTC) monolayers through coordination with Cu2+ is described. This thionine modified electrode exhibits two-new redox couples.Two protons were involved in the electrochemical process undergone by the couple I in the pH range of 5.0-10.0. The apparent surface electron transfer rate constant is about 0.050s-1.
基金supported by the National Natural Science Foundation of China (no. 51772068, 21773049)
文摘The earth-abundant magnesium metal is a kind of promising anode material due to its low reduction potential (-2.356V vs. SHE), high volumetric and gravimetric specific capacities of 3882 mAh cm-3 and 2234 mAh g_1 respectively [1]. Moreover, the magnesium anode shows high safety due to the non-dentritic electrodeposition mechanism during cycling, which is related to the strong Mg-Mg bonding and the consequent high energy barrier between the crystal boundaries of different crystal orientation [2].
文摘为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络。将脑电信号采集电极位置映射到二维矩阵中,采集信号作为通道,构成三维数据;将得到的三维数据输入到时空Inception残差注意力卷积网络之中,提取时空信息;将得到的特征输入到全连接层进行分类;将Inception结构引入脑电情绪识别领域,实现多尺度特征提取,并将电极映射到矩阵之中,保留电极位置信息,使用时空Inception残差注意力网络从时空两个维度获取脑电相关信息。实验表明,使用该模型对DEAP数据集进行情绪四分类可得到93.71%的准确度,相较于对比模型,识别精度提高了10%~20%。提出的模型在脑电信号情绪识别领域具有优良性能。
文摘铁铬氧化还原液流电池(ICRFB)是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质。然而,ICRFB存在Cr^(3+)/Cr^(2+)电化学活性低、负极易产生严重的析氢反应(HER)等问题。本文报道了一种简单的合成策略,即通过自聚合和湿化学还原方法结合煅烧处理,在氮掺杂石墨毡(GF)表面沉积了非晶态铋(Bi)纳米颗粒(NPs),其作为ICRFB的负极材料时可展示出高效的电化学性能。生成的BiNPs与H+形成中间体,极大地抑制了HER副反应。此外,Bi的引入和GF表面的N掺杂通过协同作用显著提高了Fe^(2+)/Fe^(3+)和Cr^(3+)/Cr^(2+)的电化学活性,降低了电荷传递电阻,提高了反应传质速率。在不同的电流密度下,经25次循环,库仑效率仍高达97.7%。在60.0 mA cm^(-2)电流密度下,能量效率达到85.8%,超过了许多其他报道的材料。循环100次后容量达到862.7 mAh/L,约为GF的5.3倍。