期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Exciting lattice oxygen of nickel–iron bi-metal alkoxide for efficient electrochemical oxygen evolution reaction 被引量:1
1
作者 Saihang Zhang Senchuan Huang +8 位作者 Fengzhan Sun Yinghui Li Li Ren Hao Xu Zhao Li Yifei Liu Wei Li Lina Chong Jianxin Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期194-201,I0005,共9页
High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion te... High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts. 展开更多
关键词 Oxygen evolution reaction Nickel-iron bi-metal alkoxide Lattice oxygen-mediated reaction mechanism Alkaline electrolysis ELECTROCATALYSTS
下载PDF
Process optimization,microstructures and mechanical/thermal properties of Cu/Invar bi-metal matrix composites fabricated by spark plasma sintering 被引量:8
2
作者 Qiang-qiang NIE Guo-hong CHEN +2 位作者 Bing WANG Lei YANG Wen-ming TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3050-3062,共13页
An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Inva... An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Invar bi-metal matrix composites fabricated via spark plasma sintering(SPS).The results indicated that as the Cu content increased from 30 to 50 wt.%,a continuous Cu network gradually appeared,and the density,thermal conductivity(TC)and coefficient of thermal expansion of the composites noticeably increased,but the tensile strength decreased.The increase in the sintering temperature promoted the Cu/Invar interface diffusion,leading to a reduction in the TC but an enhancement in the tensile strength of the composites.The compaction pressure comprehensively affected the thermal properties of the composites.The 50wt.%Cu/Invar composite sintered at 700℃ and 60 MPa had the highest TC(90.7 W/(m·K)),which was significantly higher than the TCs obtained for most of the previously reported Cu/Invar composites. 展开更多
关键词 spark plasma sintering(SPS) Cu/Invar bi-metal composite microstructure interface diffusion mechanical property thermal property
下载PDF
Perovskite LaFeO_3 supported bi-metal catalyst for syngas methanation 被引量:6
3
作者 Hong Wang Yuzhen Fang +1 位作者 Yuan Liu Xue Bai 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第6期745-752,共8页
LaFeO3 perovskite supported Ni and Ni-Fe catalysts were prepared and applied to methanation reaction of syngas. Two preparation methods were employed. One was one-step citrate complexing method, and the other was a tw... LaFeO3 perovskite supported Ni and Ni-Fe catalysts were prepared and applied to methanation reaction of syngas. Two preparation methods were employed. One was one-step citrate complexing method, and the other was a two step method using citrate complexing method to produce LaFeO3 and followed by loading nickel oxide on it with impregnation. The structure evolution of the sample as prepared was investigated by XRD, TPR and TEM techniques. For the former, the chemical composites of the calcined sample are NiO-Fe2O3/LaFe1-xNixO3. After reduction and reaction of CO methanation, its composites convert to Fe-Ni@Ni/LaFeO3-La2O2CO3, in which Fe-Ni@Ni is metal particles in nano-size composed of nickel core and Fe-Ni alloy shell. For the latter, the chemical composites of the calcined sample are NiO/LaFeO3; and after reduction and reaction of CO methanation, its chemical composites change to Ni/LaFeO3. Ni/LaFeO3 catalyst is a little more active, while Fe-Ni@Ni/LaFeO3-La2O2CO3 is much more stable and shows very good resistance to carbon deposition. In this work it is aimed to show that the structure and composites of the catalysts can be tailored using perovskite-type oxide as precursor with different preparing method or preparing condition. Therefore, it is a promising route to prepare supported bi-metal catalysts in nano-size for a lot of metals with desired catalytic performances. 展开更多
关键词 PEROVSKITE bi-metal NICKEL IRON SYNGAS METHANATION
下载PDF
Cu-Co bi-metal catalyst prepared by perovskite CuO/LaCoO_3 used for higher alcohol synthesis from syngas 被引量:5
4
作者 Yuzhen Fang Yuan Liu +1 位作者 Wei Deng Junhai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期527-534,共8页
Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatme... Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified C02C species. 展开更多
关键词 PEROVSKITE bi-metal higher alcohols synthesis CU-CO SYNGAS
下载PDF
Observation of interface of two kinds of bi-metal composite parts prepared by thixo-forging 被引量:4
5
作者 杨昭 周丽 董建雄 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第9期1579-1584,共6页
Two kinds of bi-metal composite parts (Sn-15%Pb and Pb-22%Sn bi-metal system, and Al-7%Si and SiCp/6061 MMC bi-metal system) were prepared by the strain-induced melt activated thixo-forging. The interfaces of the bi... Two kinds of bi-metal composite parts (Sn-15%Pb and Pb-22%Sn bi-metal system, and Al-7%Si and SiCp/6061 MMC bi-metal system) were prepared by the strain-induced melt activated thixo-forging. The interfaces of the bi-metal composites were observed by OM and SEM. The observations show that the semisolid metals keep independence during thixo-forging. The solid phases in the semisolid slurries maintain their original morphologies after thixo-forging. The liquid phases near the interface mix together and form a thin layer. The interfaces are bonded firmly with the metallurgical bonding. No oxide layers are found at the interfaces. Strengths of the interfaces were investigated by the micro-hardness test. The experimental results show that the composite interfaces have high strength. However, the agglomerated enhancing particles cause fine defect on the interface of the Al-7%Si and SiCr/6061 MMC bi-metal composite. 展开更多
关键词 semisolid metal processing bi-metal composite thixo-forming die-forging metal matrix composite
下载PDF
Impacts of zinc layer and pouring method on interface performance for Al-22Si/ZL104 bi-metal
6
作者 Jun-feng Zhao Fu-yang Cao +3 位作者 Jian-fei Sun Xiao-guang Yuan Hong-xian Shen Xin-yi Zhao 《China Foundry》 SCIE 2017年第1期39-45,共7页
Bi-metal material consisting of spray-formed Al-22Si and ZL104 is a suitable candidate for applications in internal combustion engines. This research investigated the effects of surface treatment and appropriate gatin... Bi-metal material consisting of spray-formed Al-22Si and ZL104 is a suitable candidate for applications in internal combustion engines. This research investigated the effects of surface treatment and appropriate gating system on the microstructures and mechanical properties in evaluating the optimal strategy for producing high quality bi-metal materials. The bi-metal materials were prepared using ZL104 gravity casting by different pouring types around the spray-formed AI-22Si with varied surface treatments. The wettability between AI-22Si and ZL104 was significantly improved when Zn coating was used to remove the natural oxide layer. This research also obtained the improved interfacial microstructures and interracial bonding strength for materials when applying the appropriate pouring method. The hardness profiles of AI-22Si/ZL104 bi-metal were consistent with the observed microstructures. The average tensile strength of the bi-metal material with zinc coating is -42.3 MPa, which is much higher than that with oxide film at -10 MPa. The process presented is a promising and effective approach for developing materials in the automotive industry. 展开更多
关键词 bi-metal AI alloy interface bonding zinc coating
下载PDF
Simulating the Dynamics of Bimetallic Clusters Deposited onto a Surface Using Molecular Dynamics
7
作者 Akbarali Rasulov Nodirbek Ibrokhimov +1 位作者 Jaxongir Khodjimatov Azamatjon Tukhtasinov 《Journal of Applied Mathematics and Physics》 2024年第8期2820-2828,共9页
This paper examines the interface development between a single crystalline Ag matrix and core-shell AgnCom nanoclusters that have been deposited with energies varying between 0.25 eV and 1.5 eV per atom using computer... This paper examines the interface development between a single crystalline Ag matrix and core-shell AgnCom nanoclusters that have been deposited with energies varying between 0.25 eV and 1.5 eV per atom using computer modeling techniques. Clusters undergo deformation as a result of the slowing down;they may also become epitaxial with the substrate and maintain their core-shell structure. A detailed analysis of the effects of the cluster-surface interaction is conducted over a realistic size and energy range, and a model is created to show how clusters accumulate. It is discovered that both the silver shells and the cobalt cluster cores exhibit limited epitaxy with the substrate, and that the contact produced is only a few atomic layers thick. The effect is higher for Ag shells than for Co cores, and it is not very energy dependent. 展开更多
关键词 CLUSTER Slowing Down LOW-ENERGY Molecular Dynamics Metrоpоlis Mоnte Cаrlо bi-metallic
下载PDF
High-rate lithium-ion battery performance of a ternary sea urchin-shaped CoNiO_(2)@NiP_(6)Mo_(18)/CNTs composites
8
作者 Li-ping Cui Shuang Sun +4 位作者 Kai Yu Shu Zhang Mei-lin Wang Jia-jia Chen Bai-bin Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期516-525,共10页
Bimetallic oxides are attractive anode materials for lithium-ion batteries(LIBs)due to their large theoretical capacity.However,the low conductivity,short cycle life,and poor rate capability are the bottlenecks for th... Bimetallic oxides are attractive anode materials for lithium-ion batteries(LIBs)due to their large theoretical capacity.However,the low conductivity,short cycle life,and poor rate capability are the bottlenecks for their further applications.To overcome above issues,the basket-like polymolybdate(NiP_(6)Mo_(18))and carbon nanotubes(CNTs)were uniformly embedded on the urchin-shaped CoNiO_(2)nanospheres to yield a ternary composites CoNiO_(2)@NiP_(6)Mo_(18)/CNTs via electrostatic adsorption.The multi-level morphology of urchin spinules accelerates the diffusion rate of Li^(+);CNT improves the conductivity and enhances cycle stability of the material;and heteropoly acid contributes more redox activity centres.Thus,CoNiO_(2)@NiP_(6)Mo_(18)/CNTs as an anode of LIBs exhibits a high initial capacity(1396.7 mA h g^(−1)at 0.1 A g^(−1)),long-term cycling stability(750.2 mA h g^(−1)after 300 cycles),and rate performance(450.3 mA h g^(−1)at 2 A g^(−1)),which are superior to reported metallic oxides anode of LIBs.The density functional theory(DFT)and kinetic mechanism suggest that CoNiO_(2)@NiP_(6)Mo_(18)/CNTs delivers an outstanding pseudocapacitance and rapid Li^(+)diffusion behaviors,which is due to the rich surface area of the urchin-like CoNiO_(2)with the uniform embeddedness of NiP_(6)Mo_(18)and CNTs.This study provides a new idea for optimizing the performance of bimetallic oxides and developing high-rate lithium-ion battery composites. 展开更多
关键词 bi-metal oxides Transition metal oxides POLYOXOMETALATES Nanocomposite LIBs
下载PDF
Effect of Ca Addition and Heat Treatment on the A390(S)/AM60(L) Interface Microstructure
9
作者 马立坤 陈翌庆 +3 位作者 LIU Lihua SU Yong XU Guangchen FANG Hongjiao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1117-1122,共6页
Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg(A390/AM60) bi-metallic samples, the inter... Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg(A390/AM60) bi-metallic samples, the interface microstructures are the research points, which directly influence the mechanical properties. It is, therefore, of vital importance to find a method to improve the interface microstructures. This research focused on the effect of the calcium(Ca) addition in the liquid Mg alloys and the heat treatment on the A390/AM60 interface microstructures of the bi-metallic samples. The testing results showed that, with Ca addition in AM60, owing to two possible reasons, the interface microstructure and the shear strength of the A390/AM60 bi-metallic samples could be improved. The heat treatment could further improve the interface microstructure and the mechanical properties by dissolving β-Mg_(17)Al_(12) into α-Mg and destroying the Mg_2Si layer structure. 展开更多
关键词 overcasting A390/AM60 bi-metallic material Ca addition heat treatment
下载PDF
Recent update on electrochemical CO_(2)reduction catalyzed by metal sulfide materials 被引量:1
10
作者 An Niza El Aisnada Masahiro Miyauchi +1 位作者 Min Liu Akira Yamaguchi 《Materials Reports(Energy)》 2023年第2期103-123,I0003,共22页
Seeking and developing efficient CO_(2)reduction reaction(CO_(2)RR)electrocatalysts is a hot topic in this era of global warming.Among material candidates for sustainable and cost-effective applications,metal sulfides... Seeking and developing efficient CO_(2)reduction reaction(CO_(2)RR)electrocatalysts is a hot topic in this era of global warming.Among material candidates for sustainable and cost-effective applications,metal sulfides have attracted attention as promising nature-inspired materials due to multiple adsorption sites which are enhanced by the covalent character of sulfur.This article summarizes the current status regarding the utilization and development of metal sulfide materials as CO_(2)RR electrocatalysts.First,the research background and basic principles of electrochemical CO_(2)RR are introduced.Next,an overview of the main obstacles to developing efficient CO_(2)RR electrocatalysts is presented.The section is followed by a summary of the empirical evidence supporting the application of metal sulfides as CO_(2)RR electrocatalysts beside nature-inspired motivation.The summary of synthesis methods of various metal sulfides is also presented.Furthermore,the paper also highlights the recent works on metal sulfide as efficient CO_(2)RR including the undertaking strategy on the activity enhancement,and finally,discusses the challenges and prospect of metal sulfides-based CO_(2)RR electrocatalysts.Despite recent efforts,metal sulfides remain relatively unexplored as materials for CO_(2)RR electrocatalytic applications.Therefore,this review aims to stimulate novel ideas and research for improved catalyst designs and functionality. 展开更多
关键词 Metal sulfides ELECTROCATALYST Electrochemical CO_(2)reduction bi-metal sulfides Active site Defect engineering SELECTIVITY Faradaic efficiency
下载PDF
Parallel Deformation of the Metals
11
作者 Chetan Nikhare 《Modeling and Numerical Simulation of Material Science》 2013年第3期79-83,共5页
The metal goes into the plastic deformation after the application of external load. Most of the metal forming industries work on this principle of plastic deformation. Thus the understanding of plastic deformation in ... The metal goes into the plastic deformation after the application of external load. Most of the metal forming industries work on this principle of plastic deformation. Thus the understanding of plastic deformation in the metal forming industry is important. The research on the single material plastic deformation has been carried out from many centuries before the era of Tresca. In this study the two metals 0.05% C steel annealed (soft metal) and 0.6% C steel quenched and tempered (hard metal) were deformed plastically in the parallel combination in the composite form. This study has been carried out with simple mathematical theory and simulated numerical model. The comparison shows the exact match between the mathematical and numerical results. It is also observed that the individual metal thickness affects the deformation flow curve. 展开更多
关键词 PLASTICITY bi-metal Metal FORMING MATHEMATICAL MODEL NUMERICAL MODEL
下载PDF
A pathway to refined stress and strain distributions in aerospace-grade Ti/Al bi-metal sheets:Synergizing theoretical insights and FEM simulations
12
作者 Rihuan LU Yutong LIU +3 位作者 Meihui LI Meng YAN Jingna SUN Huagui HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期493-516,共24页
This study introduces an innovative theoretical model critical for predicting stress and strain distributions in Ti/Al bi-metal sheet production and its subsequent deep drawing process.Grounded in extensive mechanical... This study introduces an innovative theoretical model critical for predicting stress and strain distributions in Ti/Al bi-metal sheet production and its subsequent deep drawing process.Grounded in extensive mechanical and geometric analysis,the model facilitates manufacturing process optimization and the production of high-quality components.Finite Element Method(FEM)simulations are integrated to examine the significant effects of die geometric parameters on metal flow dynamics and susceptibility to material stress.The model's precision is enhanced by incorporating anisotropic material properties and cohesive zone models.A rigorous experimental framework validates the model,highlighting the practical utility of optimized parameters in Ti/Al bimetal component fabrication.Additionally,uniaxial tensile tests using the Video Image Correlation-3D(VIC-3D)system provide detailed insights into material deformation,elucidating stress distribution and metal flow in composite layers.Thus,the research presents a refined methodology for the efficient production of Ti/Al bi-metal components,offering valuable knowledge transferable to various materials and processing scenarios.The findings of this work are expected to make a significant impact on material engineering and mechanical manufacturing. 展开更多
关键词 Ti/Al bi-metal sheets Deep drawing Finite Element Method Die geometric parameters Material Properties
原文传递
Catalytic depolymerization/degradation of alkali lignin by dual-component catalysts in supercritical ethanol
13
作者 Cheng Zou Haizhu Ma +2 位作者 Yunpu Guo Daliang Guo Guoxin Xue 《Journal of Bioresources and Bioproducts》 EI 2018年第1期18-24,共7页
Depolymerization of lignin is an important step to obtain lignin monomer for the synthesis of functional bio-polymers.In this paper,catalytic degradation/depolymerization of an alkali lignin was investigated in a supe... Depolymerization of lignin is an important step to obtain lignin monomer for the synthesis of functional bio-polymers.In this paper,catalytic degradation/depolymerization of an alkali lignin was investigated in a supercritical ethanol system.The process conditions were optimized in terms of lignin monomer yield,and the liquid products and solid residue were characterized.Results show that the conversion rate of the alkali lignin was improved in both the Ni7Au3 catalyzed and Nickel-catalyzed systems with supercritical ethanol as the solvent.The maximum lignin conversion rate was 69.57%and 68%respectively for the Ni7Au3 and Nickel-based catalysis systems.Gas chromatography/mass spectroscopy(GC/MS)analysis indicated that the catalytic depolymerization products of alkali lignin were mainly monomeric phenolic compounds such as 2-methoxyphenol.The highest yield of 2-methoxyphenol(84.72%)was achieved with Ni7Au3 as the catalyst. 展开更多
关键词 bi-metallic catalysis Alkali lignin Supercritical ethanol 2-Methoxyphenol
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部