期刊文献+
共找到949篇文章
< 1 2 48 >
每页显示 20 50 100
Spray pyrolysis feasibility of tungsten substitution for cobalt in nickel-rich cathode materials
1
作者 Zihan Hou Lisheng Guo +8 位作者 Xianlong Fu Hongxian Zheng Yuqing Dai Zhixing Wang Hui Duan Mingxia Dong Wenjie Peng Guochun Yan Jiexi Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2244-2252,共9页
Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transiti... Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent. 展开更多
关键词 lithium-ion batteries Ni-rich LOW-COBALT W substitution spray pyrolysis
下载PDF
HVOF-sprayed HAp/S53P4 BG composite coatings on an AZ31 alloy for potential applications in temporary implants
2
作者 Carlos A.Poblano-Salas John Henao +6 位作者 Astrid L.Giraldo-Betancur Paola Forero-Sossa Diego German Espinosa-Arbelaez Jorge A.González-Sánchez Luis R.Dzib-Pérez Susana T.Estrada-Moo Idelfonso E.Pech-Pech 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期345-360,共16页
Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HA... Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HAp and BG to dissolve and promote osseointegration,considering that both phases have different reaction and dissolution rates under in-vitro conditions.In the present work,75%wt.HAp-25%wt.S53P4 bioactive glass powders were HVOF-sprayed to obtain HAp/S53P4 BG composite coatings on a bioresorbable AZ31 alloy.The study is focused on exploring the effect of the stand-off distance and fuel/oxygen ratio variation as HVOF parameters to obtain stable structural coatings and to establish their effect on the phases and microstructure produced in those coatings.Different characterization techniques,such as scanning electron microscopy,X-ray diffraction,and Fourier transform infrared spectroscopy,were employed to characterize relevant structural and microstructural properties of the composite coatings.The results showed that thermal gradients during coating deposition must be managed to avoid delamination due to the high temperature achieved(max 550℃)and the differences in coefficients of thermal expansion.It was also found that both spraying distance and oxygen/fuel ratio allowed to keep the hydroxyapatite as the main phase in the coatings.In addition,in-vitro electrochemical studies were performed on the obtained HAp/S53P4 BG composite coatings and compared against the uncoated AZ31 alloy.The results showed a significant decrease in hydrogen evolution(at least 98%)when the bioactive coating was applied on the Mg alloy during evaluation in simulated body fluid(SBF). 展开更多
关键词 Coatings Composites Thermal spray Temporary implants Hydrogen evolution
下载PDF
Selective lithium recovery and regeneration of ternary cathode from spent lithium-ion batteries:Mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis approach
3
作者 Ziyu Chen Yongchao Zhou +1 位作者 Yan Li Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期284-293,共10页
The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency ... The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency and the need for multiple separation operations.Here,we propose a process involving mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis for recycling spent ternary LIBs,achieving both selective Li recovery and the preparation of a ternary oxide precursor.Specifically,the process transforms spent ternary cathode(LiNi_(x)Co_yMn_(2)O_(2),NCM) powder into Li_(2)SO_(4) solution and ternary oxide,which can be directly used for synthesizing battery-grade Li_(2)CO_(3) and NCM cathode,respectively.Notably,SO_(4)^(2-) selectively precipitates with Li^(+) to form thermostable Li_(2)SO_(4) during the spray pyrolysis,which substantially improves the Li recovery efficiency by inhibiting Li evaporation and intercalation.Besides,SO_(2) emissions are avoided by controlling the molar ratio of Li^(+)/SO_(4)^(2-)(≥2:1),The mechanism of the preferential formation of Li_(2)SO_(4) is interpreted from its reverse solubility variation with temperature.During the recycling of spent NCM811,92% of Li is selectively recovered,and the regenerated NCM811 exhibits excellent cycling stability with a capacity retention of 81.7% after 300 cycles at 1 C.This work offers a simple and robust process for the recycling of spent NCM cathodes. 展开更多
关键词 Spent lithium-ion batteries Selective lithium recovery spray pyrolysis Cathode regeneration Acid-leaching
下载PDF
Experimental investigation on effective aerosol scavenging using different spray configurations with pre-injection of water mist for Fukushima Daiichi decommissioning
4
作者 Rui-Cong Xu Avadhesh Kumar Sharma +2 位作者 Erdal Ozdemir Shuichiro Miwa Shunichi Suzuki 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期154-172,共19页
During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris... During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris from the reactor building,the resolidified debris must be cut into smaller pieces using various cutting methods.During the cutting process,aerosol particles are expected to be generated at the submicron scale.It has been noted that such aerosols sizing within the Greenfield gap(0.1-1μm)are difficult to remove effectively using traditional spraying methods.Therefore,to improve the aerosol removal efficiency of the spray system,a new aerosol agglomeration method was recently proposed,which involves injecting water mist to enlarge the sizes of the aerosol particles before removing them using water sprays.In this study,a series of experiments were performed to clarify the proper spray configurations for effective aerosol scavenging and to improve the performance of the water mist.The experimental results showed that the spray flow rate and droplet characteristics are important factors for the aerosol-scavenging efficiency and performance of the water mist.The results obtained from this study will be helpful for the optimization of the spray system design for effective aerosol scavenging during the decommissioning of the Fukushima Daiichi plant. 展开更多
关键词 Fukushima Daiichi decommissioning Aerosol scavenging Multiphase flow spray system Aerosol-mist agglomeration
下载PDF
Structure and corrosion behavior of FeCoCrNiMo high-entropy alloy coatings prepared by mechanical alloying and plasma spraying
5
作者 Yun Tian Jianing Liu +5 位作者 Mingming Xue Dongyao Zhang Yuxin Wang Keping Geng Yanchun Dong Yong Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2692-2705,共14页
FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segrega... FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines. 展开更多
关键词 high-entropy alloy coatings plasma spray mechanical alloying microstructure corrosion behavior mechanical property
下载PDF
Simulation Study on the Heat Transfer Characteristics of a Spray-Cooled Single-Pipe Cooling Tower
6
作者 Kaiyong Hu Zhaoyi Chen +4 位作者 Yunqing Hu Huan Sun Zhili Sun Tonghua Zou Jinghong Ning 《Fluid Dynamics & Materials Processing》 EI 2024年第9期2109-2126,共18页
The current study focuses on spray cooling applied to the heat exchange components of a cooling tower.An optimization of such processes is attempted by assessing different spray flow rates and droplet sizes.For simpli... The current study focuses on spray cooling applied to the heat exchange components of a cooling tower.An optimization of such processes is attempted by assessing different spray flow rates and droplet sizes.For simplicity,the heat exchanger of the cooling tower is modeled as a horizontal round tube and a cooling tower spray cooling model is developed accordingly using a computational fluid dynamics(CFD)software.The study examines the influence of varying spray flow rates and droplet sizes on the heat flow intensity between the liquid layer on the surface of the cylindrical tube and the surrounding air,taking into account the number of nozzles.It is observed that on increasing the spray flow strength,the heat flow intensity and extent of the liquid film in the system are enhanced accordingly.Moreover,the magnitude of droplet size significantly impacts heat transfer.A larger droplet size decreases evaporation in the air and enhances the deposition of droplets on the round tube.This facilitates the creation of the liquid film and enhances the passage of heat between the liquid film and air.Increasing the number of nozzles,while maintaining a constant spray flow rate,results in a decrease in the flow rate of each individual nozzle.This decrease is not favorable in terms of heat transfer. 展开更多
关键词 spray cooling droplet sizes number of nozzles CFD
下载PDF
Investigation of the Film Formation in Dynamic Air Spray Painting
7
作者 Deqing Han Yong Zeng +1 位作者 Jintong Gu Bin Yan 《Fluid Dynamics & Materials Processing》 EI 2024年第10期2393-2415,共23页
To accurately predict the film thickness distribution during dynamic spraying performed with air guns and support accordingly the development of intelligent spray painting,the spray problem was analyzed numerically.In... To accurately predict the film thickness distribution during dynamic spraying performed with air guns and support accordingly the development of intelligent spray painting,the spray problem was analyzed numerically.In particular,the Eulerian-Eulerian approach was employed to calculate the paint atomization and film deposition process.Different spray heights,spray angles,spray gun movement speeds,spray trajectory curvature radii,and air pressure values were considered.Numerical simulation results indicate that the angle of spray painting significantly affects the velocity of droplets near the spray surface.With an increase in the spraying angle,spraying height and spray gun movement speed,the maximum film thickness decreases to varying degrees,and the uniformity of the film thickness also continuously worsens.When the spray gun moves along an arc trajectory,at smaller arc radii,the film thickness on the inside of the arc is slightly greater than that on the outside,but the impact on the maximum film thickness is minimal.Increasing air pressure expands the coating coverage area,results in finer atomization of paint droplets,and leads to a thinner and a more uniform paint film.However,if the pressure is too high,it can cause paint splattering.Using the orthogonal experimental method,multiple sets of simulation calculations were conducted,and the combined effects of spraying height,spray angle,and spray gun movement speed on the film thickness distribution were comprehensively analyzed to determine optimal configurations.Finally,the reliability of the numerical simulations was validated through dynamic spray painting experiments. 展开更多
关键词 Air spray painting CFD simulation paint film-forming regularity orthogonal array testing
下载PDF
Effects of plasma spraying process on microstructure and mechanical properties of Cr_(2)AlC/410 composite coatings
8
作者 Yihu Ma Chaosheng Ma +1 位作者 Guozheng Ma Wenbo Yu 《High-Speed Railway》 2024年第2期110-115,共6页
To investigate the influences of Cr_(2)AlC mass fraction and supersonic plasma spraying process on the microstructure and mechanical properties of Cr_(2)AlC reinforced 410 stainless steel composite coatings,the coatin... To investigate the influences of Cr_(2)AlC mass fraction and supersonic plasma spraying process on the microstructure and mechanical properties of Cr_(2)AlC reinforced 410 stainless steel composite coatings,the coatings containing different mass fractions of Cr_(2)AlC were prepared and investigated.The composite coating exhibited low porosity and high adhesion strength.The addition of Cr_(2)AlC significantly enhanced the hardness of the composite coatings through particle strengthening.However,when the mass fraction of Cr_(2)AlC was 20%,the aggregation of Cr_(2)AlC resulted in a strong decrease in the coating preparation efficiency,as well as a decline in adhesion strength.In the supersonic plasma spraying process,the Ar flow rate mainly influenced the flight velocity of the particles,while the H_(2) flow rate and the current mainly affected the temperature of the plasma torch.Consequently,all of them influenced the melting degree of particles and the quality of the coating.The lowest porosity and the highest hardness and adhesion strength could be obtained when the Ar flow rate is 125 L/min,the H_(2) flow rate is 25 L/min,and the current is 385 A. 展开更多
关键词 MAX phase Plasma spray PARAMETER Coating
下载PDF
Effect of cold rolling deformation on microstructure evolution and mechanical properties of spray formed Al−Zn−Mg−Cu−Cr alloys
9
作者 Cai-he FAN Yi-hui LI +4 位作者 Qin WU Ling OU Ze-yi HU Yu-meng NI Jian-jun YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2442-2454,共13页
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0... The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively. 展开更多
关键词 Al−Zn−Mg−Cu alloy spray forming microstructure evolution mechanical properties strengthening mechanism
下载PDF
Preparation and Properties of Spray Polyurea Elastomer for Aquaculture Foam Floating Balls
10
作者 Guifang HUANG Guanyuan WEI +3 位作者 Shengjun WEI Lan DING Wenhong CAI Bolin PAN 《Agricultural Biotechnology》 2024年第2期38-42,共5页
[Objectives] This study was conducted to develop a polyurea elastomer which can be sprayed on the surface of expanded polystyrene (EPS) floating balls, so as to improve the surface strength and service life of the flo... [Objectives] This study was conducted to develop a polyurea elastomer which can be sprayed on the surface of expanded polystyrene (EPS) floating balls, so as to improve the surface strength and service life of the floating balls. [Methods] The effects of the types and amounts of isocyanate, chain extenders and polyether polyols on the gelation rate, adhesion and wear resistance of polyurea elastomer were investigated, and it was finally determined the preparation process of polyurea elastomer using liquid isophorone diisocyanate (IPDI) and amino-terminated polyether (D2000) as the main raw materials, dimethylthiotoluene diamine (E300) as the chain extender and silica as the wear resistance modifier through two-step solution polymerization of prepolymerization and chain extension. [Results] The physical properties and chemical resistance tests of spray polyurea elastomer showed that it had good physical properties and acid and alkali resistance, and could meet the requirements of spraying and protection of EPS floating ball surface in marine environment. [Conclusions] Polyurea elastomer coating can improve the aging resistance, wear resistance and acid and alkali resistance of EPS floating balls, and prevent them from being fragile and floating randomly to form marine floating garbage which results in "white pollution". 展开更多
关键词 EPS floating ball spray polyurea elastomer Gelation rate Wear resistant ADHESION Chemical resistance
下载PDF
Effect of Spray Rails on Takeoff Performance of Amphibian Aircraft
11
作者 Soham S. Bahulekar Alberto W. Mello 《World Journal of Engineering and Technology》 2024年第1期117-140,共24页
Amphibian aircraft have seen a rise in popularity in the recreational and utility sectors due to their ability to take off and land on both land and water, thus serving a myriad of purposes, such as aerobatics, survei... Amphibian aircraft have seen a rise in popularity in the recreational and utility sectors due to their ability to take off and land on both land and water, thus serving a myriad of purposes, such as aerobatics, surveillance, and firefighting. Such seaplanes must be aerodynamically and hydrodynamically efficient, particularly during the takeoff phase. Naval architects have long employed innovative techniques to optimize the performance of marine vessels, including incorporating spray rails on hulls. This research paper is dedicated to a comprehensive investigation into the potential utilization of spray rails to enhance the takeoff performance of amphibian aircraft. Several spray rail configurations obtained from naval research were simulated on a bare Seamax M22 amphibian hull to observe an approximate 10% - 25% decrease in water resistance at high speeds alongside a 3% reduction in the takeoff time. This study serves as a motivation to improve the design of the reference airplane hull and a platform for detailed investigations in the future to improve modern amphibian design. 展开更多
关键词 Seaplane spray Rails Hull Optimization Take-Off Performance
下载PDF
Designing an Experimental Device for Swinging Excitation Spray Cooling
12
作者 Long Huang Yujiao Wang 《Journal of Electronic Research and Application》 2024年第2期151-157,共7页
In this paper,we introduce the design principle of the oscillating excited spray cooling experimental device.We then designed an oscillating excited spray cooling experimental device.By using the device,the swaying mo... In this paper,we introduce the design principle of the oscillating excited spray cooling experimental device.We then designed an oscillating excited spray cooling experimental device.By using the device,the swaying motion can be realized through the control system,and the motion of the droplet under different vibration frequencies can be observed.By measuring the liquid flow rate and pressure,the changes in liquid flow rate,pressure,and temperature with time under different vibration frequencies were studied.The trajectory of the droplet and the temperature distribution of the droplet under different vibration frequencies could be observed.The device has a simple structure,is easy to control,and can achieve continuous observation of the spray cooling process. 展开更多
关键词 Oscillating excitation spray cooling Experimental device design
下载PDF
Influence of Spray Gun Position and Orientation on Liquid Film Development along a Cylindrical Surface 被引量:1
13
作者 Jiuxuan Liu Yong Zeng +3 位作者 Xueya Zhao Hongbo Chen Bin Yan Qian Lu 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2499-2518,共20页
A method combining computationalfluid dynamics(CFD)and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquidfilm along the surface of a cylindrical workp... A method combining computationalfluid dynamics(CFD)and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquidfilm along the surface of a cylindrical workpiece.The numerical method relies on an Eulerian-Eulerian technique.Different cylinder diameters and positions and inclinations of the spray gun are considered and useful correlations for the thickness of the liquidfilm and its distribution are determined using various datafitting algorithms.Finally,the reliability of the pro-posed method is verified by means of experimental tests where the robot posture is changed.The provided cor-relation are intended to support the optimization of spray-based coating applications. 展开更多
关键词 Cylindrical surface CFD numerical simulation film-forming regularity variable position spray prediction of film thickness distribution
下载PDF
The Influence of Sea Sprays on Drag Coefficient at High Wind Speed
14
作者 SHI Hongyuan LI Qingjie +4 位作者 WANG Zhaowei ZHANG Xuri LI Huaqing XING Hao ZHANG Kuncheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期21-27,共7页
Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds.By taking the effects of wave development and sea spra... Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds.By taking the effects of wave development and sea spray into account,a new parameterization of drag coefficient applicable from low to extreme winds is proposed.It is shown that,under low-to-moderate wind conditions so that the sea spray effects could be neglected,the nondimensional aerodynamic roughness first increases and then decreases with the increasing wave age;whereas under high wind conditions,the drag coefficient decreases with the increasing wind speed due to the modification of the logarithmic wind profile by the effect of sea spray droplets produced by bursting bubbles or wind tearing breaking wave crests.The drag coefficients and sea surface aerodynamic roughnesses reach their maximum values vary under different wave developments.Correspondingly,the reduction of drag coefficient under high winds reduces the increasing rate of friction velocity with increasing wind speed. 展开更多
关键词 sea spray wave age drag coefficient high wind speed
下载PDF
Sea spray induced air-sea heat and salt fluxes based on the wavesteepnessdependent sea spray model
15
作者 Xingkun Xu Joey J.Voermans +1 位作者 Changlong Guan Alexander V.Babanin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期35-41,共7页
Sea spray,which comprises amounts of small ocean droplets,plays a significant role in the air-sea coupling,atmospheric and oceanic dynamics,and climate.However,it remains arduous to arrive at estimates for the efficie... Sea spray,which comprises amounts of small ocean droplets,plays a significant role in the air-sea coupling,atmospheric and oceanic dynamics,and climate.However,it remains arduous to arrive at estimates for the efficiency and accuracy of the sea spray induced air-sea heat and salt fluxes.This is because the microphysical process of sea spray evolution in the air is of extreme complexity.In this study,we iteratively calculated the sea spray induced air-sea heat and salt fluxes at various weather condition.To do so,we implemented one novel wave-steepness-dependent sea spray model into a bulk air-sea fluxes algorithm and utilized other sea spray models as comparisons.Based on the improved wave-dependent bulk turbulent algorithm,we observed that despite the negative contribution of sea spray to the sensible heat fluxes,the sea spray positively contributes to the air-sea latent heat fluxes,leading to an overall increase in the total air-sea heat fluxes.The additional heat fluxes caused by sea spray may be the missing critical process that can clarify the discrepancies observed between measured and modelled Tropical Cyclone’s development and intensification.In addition to heat fluxes,we observed that sea spray has significant impacts on the air-sea salt fluxes.As the sea salt particles are one of the main sources of the atmosphere aerosol,our results imply that sea spray could impact global and regional climate.Thus,given the significance of sea spray on the air-sea boundary layer,sea spray effects need to be considered in studies of air-sea interaction,dynamics of atmosphere and ocean. 展开更多
关键词 sea spray air-sea heat fluxes air-sea salt fluxes WAVE
下载PDF
Experimental study on the improvement of spray characteristics of aero-engines using gliding arc plasma
16
作者 张磊 张登成 +4 位作者 于锦禄 赵兵兵 屈新宇 陈一 程伟达 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期117-129,共13页
A gliding arc plasma fuel atomization actuator suitable for aeroengines was designed,and a gliding arc plasma fuel spray experimental platform was built to address the fuel atomization problem in aeroengine combustion... A gliding arc plasma fuel atomization actuator suitable for aeroengines was designed,and a gliding arc plasma fuel spray experimental platform was built to address the fuel atomization problem in aeroengine combustion chambers.The spray characteristics for different airflows,fuel flows,and discharge voltages were analyzed using laser particle size analysis.The research shows that the fuel atomization effect is improved from the increased airflow.The decreased fuel flow not only reduces the injection pressure of the fuel but also changes the discharge mode of the gliding arc,which affects reductions in the discharge power and inhibits fuel atomization.Gliding arc discharges accelerate the breaking,atomization,and evaporation of fuel droplets while reducing the particle size,which increases the proportion of small droplets.Compared with the working conditions of plasma-assisted atomization without the gliding arc,the D0.5,D0.9,and average particle size of the fuel droplets are reduced by 4.7%,6.5%,and 4.1%,respectively,when the modulation voltage of the gliding arc power supply is 200 V. 展开更多
关键词 gliding arc discharge spray characteristics droplet size distribution AEROENGINE
下载PDF
Effect of Intake Conditions and Nozzle Geometry on Spray Characteristics of Group-Hole Nozzle
17
作者 Jianfeng Pan Jinpeng Hua +1 位作者 Jiaqi Yao Abiodun Oluwaleke Ojo 《Energy Engineering》 EI 2023年第7期1541-1562,共22页
The group-hole nozzle concept is proposed to meet the requirement of nozzle hole minimization and reduce the negative impact of poor spatial spray distributions.However,there are limited researches on the effects of i... The group-hole nozzle concept is proposed to meet the requirement of nozzle hole minimization and reduce the negative impact of poor spatial spray distributions.However,there are limited researches on the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle.Therefore,in this study,an accurate spray model coupled with the internal cavitating flow was established and computational fluid dynamics(CFD)simulations were done to study the effects of intake conditions and nozzle geometry on spray characteristics of the group-hole nozzle.Experimental data obtained using high-speed digital camera on the high-pressure common rail injection system was used to validate the numerical model.Effects of intake conditions(injection pressure and temperature)and nozzle geometry(orifice entrance curvature radius and nozzle length)on the flow and spray characteristics of the group-hole nozzle were studied numerically.The differences in Sauter mean diameter(SMD),penetration length and fuel evaporation mass between single-hole nozzle and group-hole nozzle under different nozzle geometry were also discussed.It was found that the atomization performance of the group-hole nozzle was better than that of the single-hole nozzle under same intake conditions,and the atomization effect of the short nozzle was better than that of the long nozzle.With increase in the orifice entrance curvature radius,the average velocity and turbulent kinetic energy of the fuel increased,which was conducive to improving the injection rate and flow coefficient of the nozzle.Meanwhile,the penetration length and SMD value rose,while evaporation mass dropped.When the ratio of the orifice entrance curvature radius(R)to the diameter of injection hole(D)was 0.12,the spray characteristics reached a constant state due to elimination of cavitation.Conclusions were made based on these.This study is expected to be a guide for the design of the group-hole nozzle. 展开更多
关键词 DIESEL spray characteristics group-hole nozzle coupling model
下载PDF
Experimental Investigation on Macro Spray Characteristics of Octanol-Biodiesel-Diesel Ternary Fuel Blend
18
作者 Tian Junjian Qiu Zhicong +3 位作者 Zhao Lifei Li Fengyu Hu Peng Lin Qizhao 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第4期1-15,共15页
This study investigates the spray characteristics of ternary blends composed of octanol, biodiesel, and diesel fuel.Experiments are conducted using six materials to examine the variation in spray characteristic and to... This study investigates the spray characteristics of ternary blends composed of octanol, biodiesel, and diesel fuel.Experiments are conducted using six materials to examine the variation in spray characteristic and to verify and compare a previously established spray tip penetration model with a modified model. The results show that the addition of OB100(30%of octanol, 70% of biodiesel) improves the spray characteristics of the fuel. Specifically, the addition of 10% or 20% of OB100 leads to a slight increase in the spray tip penetration, average spray cone angle, maximum spray width, and the spray area of the fuel blend;however, further addition of OB100 causes a corresponding decrease in these parameters. Based on previous research, this study uses kinematic viscosity instead of dynamic viscosity and density to modify the prediction model of spray tip penetration. The modified model exhibits a better fit quality and agreement with the experimental data,making it more suitable for predicting the spray tip penetration of fuel blends compared to the Hiroyasu-Arai model. 展开更多
关键词 OCTANOL BIODIESEL ternary fuel blend maximum spray width modified model
下载PDF
Residual stress with asymmetric spray quenching for thick aluminum alloy plates
19
作者 Ning Fan Zhihui Li +3 位作者 Yanan Li Xiwu Li Yongan Zhang Baiqing Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2200-2211,共12页
Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates.However,the asymmetric or uneven spray water flow rate is inevitable under indust... Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates.However,the asymmetric or uneven spray water flow rate is inevitable under industrial production conditions,which leads to an asymmetric residual stress distribution.The spray quenching treatment was conducted on self-designed spray equipment,and the residual stress along the thickness direction was measured by a layer removal method based on deflections.Under the asymmetric spray quenching condition,the subsurface stress of the high-flow rate surface was lower than that of the low-flow rate surface,and the difference between the two subsurface stresses increased with the increase in the difference in water flow rates.The subsurface stress underneath the surface with a water flow rate of 0.60 m^(3)/h was 15.38 MPa less than that of 0.15 m^(3)/h.The simulated residual stress by finite element(FE)method of the high heat transfer coefficient(HTC)surface was less than that of the low HTC surface,which is consistent with the experimental results.The FE model can be used to analyze the strain and stress evolution and predict the quenched stress magnitude and distribution. 展开更多
关键词 aluminum alloy spray quenching residual stress layer removal method finite element method
下载PDF
Enhancing energetic performance of metal-organic complex-based metastable energetic nanocomposites by spray crystallization
20
作者 Ke-xin Wang Li-xiao Shen +5 位作者 Bin Yuan Yan Li Shun-guan Zhu Lin Zhang Zhen-xin Yi Chen-guang Zhu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期203-213,共11页
Energetic metal-organic complexes have been involved in nanothermites as novel oxidants.However,the existing preparation methods often lead to mixing inhomogeneity and small contact area of ingredients,the reactivity ... Energetic metal-organic complexes have been involved in nanothermites as novel oxidants.However,the existing preparation methods often lead to mixing inhomogeneity and small contact area of ingredients,the reactivity and functionality of the novel energetic nanocomposites are still limited.In this work,spray crystallization(SC)method was used to prepare novel energetic nanocomposites,the high-energy metal-organic complex[Ni(CHZ)_(3)](ClO_(4))_(2)(CHZ=1,3-diaminourea)was composited with nanoaluminum(n-Al).Results showed that n-Al/[Ni(CH_(2))_(3)](ClO_(4))_(2)energetic nanocomposites prepared by SC method increased heat release to 2977.6 J/g and peak pressure to 3.91 MPa with higher pressurization rate(1324.06 MPa/s),decreased sensitivity thresholds(>100 mJ)to electrostatic discharge(ESD)and enhanced detonation ability compared with[Ni(CHZ)_(3)](ClO_(4))_(2)alone and physically mixed(PM)n-Al/[Ni(CHZ)_(3)](ClO_(4))_(2).These results proved that it is significant to introduce energetic metal-organic complexes with inherent high energy in new-concept n-Al/energetic metal-organic complexes nanocomposites through SC method for a better performance of its application. 展开更多
关键词 Energetic metal-organic complexes Nano aluminum Energetic nanocomposites spray crystallization Thermite reaction
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部