By means of Riemann-Stieltjes stochastic process, moment-generating functions and operator-valued mathematical expectation, the problem of probabilistic approximation for bi-continuous C-semigroups is studied and the ...By means of Riemann-Stieltjes stochastic process, moment-generating functions and operator-valued mathematical expectation, the problem of probabilistic approximation for bi-continuous C-semigroups is studied and the general probabilistic approximation of exponential formulas and the generation theorems are given.展开更多
Passive cooling permits thermal management of near-zero energy consumption and low CO_(2)emissions.Despite significant progress of passive radiative coolers,comfortable and steady temperatures can hardly be achieved d...Passive cooling permits thermal management of near-zero energy consumption and low CO_(2)emissions.Despite significant progress of passive radiative coolers,comfortable and steady temperatures can hardly be achieved due to their inadequate daytime cooling power(below 0.2 k W m^(-2))yet over-cooling at night.Here,we provide a bright-white hydrogel that enables ondemand passive cooling by virtue of adaptive water evaporation and high solar reflectance up to 86.1%.Notably,theoretical cooling power determined by the evaporating rate can reach 1.25 k W m^(-2)in daytime but decreases dramatically at night.Hence sub-ambient temperature reduction of 11-13℃at noon yet nearly none at night are realized,with the diurnal temperature difference narrowed significantly.Moreover,effective cooling using colored hydrogels,and transition from evaporative cooling to solar heating have been demonstrated.This novel evaporative cooling approach will pave the way for smart passive coolers of high efficiency,colorful appearance,and low cost.展开更多
Solid-state electrolytes(SSEs)with high ionic conductivity,mechanical stability,and high thermal stability,as well as the stringent requirement of application in high-temperature fuel cells and lithium-ion batteries i...Solid-state electrolytes(SSEs)with high ionic conductivity,mechanical stability,and high thermal stability,as well as the stringent requirement of application in high-temperature fuel cells and lithium-ion batteries is receiving increasing attention.Polymer nanocomposites(PNCs),combining the advantages of inorganic materials with those of polymeric materials,offer numerous opportunities for SSEs design.In this work,we report a facile and general one-pot approach based on polymerization-induced microphase separation(PIMS)to generate PNCs with bi-continuous microphases.This synthetic strategy transforms a homogeneous liquid precursor consisting of polyoxometalates(POMs,H_(3)PW_(12)O_(40),Li_(7)[V_(15)O_(36)(CO_(3))]),poly(ethylene glycol)(PEG)macro-chain-transfer agent,styrene and divinylbenzene monomers,into a robust and transparent monolith.The resulting POMs are uniformly dispersed in the PEG block(PEG/POM)to form a conducting pathway that successfully realizes the effective transfer of protons and lithium ions,while the highly cross-linked polystyrene domains(P(S-co-DVB))as mechanical support provide outstanding mechanical properties and thermal stability.As the POM loading ratio up to 35 wt%,the proton conductivity of nanocomposite reaches as high as 5.99×10^(-4) S/cm at 100℃ in anhydrous environment,which effectively promotes proton transfer under extreme environments.This study broadens the application of fuel cells and lithium-ion batteries in extreme environments.展开更多
The relationship between microphase structure and mechanical response of the binary blends consisting of polystyrene-block-polyisoprene-block-polystyrene copolymer and low molecular weight polystyrene has been investi...The relationship between microphase structure and mechanical response of the binary blends consisting of polystyrene-block-polyisoprene-block-polystyrene copolymer and low molecular weight polystyrene has been investigated. Low molecular weight polystyrene was chosen to obtain uniformly solubilized nano-blends without macrophase separation. The specimens were solution-cast by adding different amounts of homo-polystyrene to acquire different microphase structures. Small angle X-ray scattering(SAXS), transmission electron microscopy(TEM) and atom force microscopy(AFM) have been used to study the microdomain and grain structure. It is observed that the structural changes in d-spacing and grain size on account of different amounts of polystyrene alter the mechanical behavior in both monotonic tensile and cyclic tests. The elastic and the Mullins effects are strongly sensitive to the changes in d-spacing and grain sizes. Moreover, the sample with bi-continuous structure shows the largest tensile strength and Mullins effect. In addition, the Mooneye-Rivlin phenomenological model was used to evaluate and explore the relationship between the polymer topological networks and the rubber elasticity of these styrenic nano-blends.展开更多
基金The NSF(10671205)of ChinaFundamental Research Funds(3142012022,3142013039 and 3142014039)for the Central Universitiesthe Key Discipline Construction Project(HKXJZD201402)of NCIST
文摘By means of Riemann-Stieltjes stochastic process, moment-generating functions and operator-valued mathematical expectation, the problem of probabilistic approximation for bi-continuous C-semigroups is studied and the general probabilistic approximation of exponential formulas and the generation theorems are given.
基金supported by the National Natural Science Foundation of China(51733008,51522308)。
文摘Passive cooling permits thermal management of near-zero energy consumption and low CO_(2)emissions.Despite significant progress of passive radiative coolers,comfortable and steady temperatures can hardly be achieved due to their inadequate daytime cooling power(below 0.2 k W m^(-2))yet over-cooling at night.Here,we provide a bright-white hydrogel that enables ondemand passive cooling by virtue of adaptive water evaporation and high solar reflectance up to 86.1%.Notably,theoretical cooling power determined by the evaporating rate can reach 1.25 k W m^(-2)in daytime but decreases dramatically at night.Hence sub-ambient temperature reduction of 11-13℃at noon yet nearly none at night are realized,with the diurnal temperature difference narrowed significantly.Moreover,effective cooling using colored hydrogels,and transition from evaporative cooling to solar heating have been demonstrated.This novel evaporative cooling approach will pave the way for smart passive coolers of high efficiency,colorful appearance,and low cost.
基金supported by National Natural Science Foundation of China(Nos.21961142018,22101086 and 51873067)Natural Science Foundation of Guangdong Province(Nos.2021A1515012024 and 2021A1515010271)。
文摘Solid-state electrolytes(SSEs)with high ionic conductivity,mechanical stability,and high thermal stability,as well as the stringent requirement of application in high-temperature fuel cells and lithium-ion batteries is receiving increasing attention.Polymer nanocomposites(PNCs),combining the advantages of inorganic materials with those of polymeric materials,offer numerous opportunities for SSEs design.In this work,we report a facile and general one-pot approach based on polymerization-induced microphase separation(PIMS)to generate PNCs with bi-continuous microphases.This synthetic strategy transforms a homogeneous liquid precursor consisting of polyoxometalates(POMs,H_(3)PW_(12)O_(40),Li_(7)[V_(15)O_(36)(CO_(3))]),poly(ethylene glycol)(PEG)macro-chain-transfer agent,styrene and divinylbenzene monomers,into a robust and transparent monolith.The resulting POMs are uniformly dispersed in the PEG block(PEG/POM)to form a conducting pathway that successfully realizes the effective transfer of protons and lithium ions,while the highly cross-linked polystyrene domains(P(S-co-DVB))as mechanical support provide outstanding mechanical properties and thermal stability.As the POM loading ratio up to 35 wt%,the proton conductivity of nanocomposite reaches as high as 5.99×10^(-4) S/cm at 100℃ in anhydrous environment,which effectively promotes proton transfer under extreme environments.This study broadens the application of fuel cells and lithium-ion batteries in extreme environments.
基金financially supported by the National Natural Science Foundation of China(Nos.51173112 and 51121001)the Special Funds for Major State Basic Research Projects of China(No.2011CB606006)
文摘The relationship between microphase structure and mechanical response of the binary blends consisting of polystyrene-block-polyisoprene-block-polystyrene copolymer and low molecular weight polystyrene has been investigated. Low molecular weight polystyrene was chosen to obtain uniformly solubilized nano-blends without macrophase separation. The specimens were solution-cast by adding different amounts of homo-polystyrene to acquire different microphase structures. Small angle X-ray scattering(SAXS), transmission electron microscopy(TEM) and atom force microscopy(AFM) have been used to study the microdomain and grain structure. It is observed that the structural changes in d-spacing and grain size on account of different amounts of polystyrene alter the mechanical behavior in both monotonic tensile and cyclic tests. The elastic and the Mullins effects are strongly sensitive to the changes in d-spacing and grain sizes. Moreover, the sample with bi-continuous structure shows the largest tensile strength and Mullins effect. In addition, the Mooneye-Rivlin phenomenological model was used to evaluate and explore the relationship between the polymer topological networks and the rubber elasticity of these styrenic nano-blends.