期刊文献+
共找到1,170篇文章
< 1 2 59 >
每页显示 20 50 100
A gated recurrent unit model to predict Poisson’s ratio using deep learning
1
作者 Fahd Saeed Alakbari Mysara Eissa Mohyaldinn +4 位作者 Mohammed Abdalla Ayoub Ibnelwaleed A.Hussein Ali Samer Muhsan Syahrir Ridha Abdullah Abduljabbar Salih 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期123-135,共13页
Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe... Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs. 展开更多
关键词 Static Poisson’s ratio Deep learning gated recurrent unit(GRU) Sand control Trend analysis Geomechanical properties
下载PDF
Aerial target threat assessment based on gated recurrent unit and self-attention mechanism
2
作者 CHEN Chen QUAN Wei SHAO Zhuang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期361-373,共13页
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ... Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning. 展开更多
关键词 target threat assessment gated recurrent unit(GRU) self-attention(SA) fractional Fourier transform(FRFT)
下载PDF
A HybridManufacturing ProcessMonitoringMethod Using Stacked Gated Recurrent Unit and Random Forest
3
作者 Chao-Lung Yang Atinkut Atinafu Yilma +2 位作者 Bereket Haile Woldegiorgis Hendrik Tampubolon Hendri Sutrisno 《Intelligent Automation & Soft Computing》 2024年第2期233-254,共22页
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ... This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems. 展开更多
关键词 Smart manufacturing process monitoring quality control gated recurrent unit neural network random forest
下载PDF
Radar Quantitative Precipitation Estimation Based on the Gated Recurrent Unit Neural Network and Echo-Top Data 被引量:2
4
作者 Haibo ZOU Shanshan WU Miaoxia TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期1043-1057,共15页
The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). I... The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). In this study, we propose a new method, GRU_Z-ET, by introducing Z and ET as two independent variables into the GRU neural network to conduct the quantitative single-polarization radar precipitation estimation. The performance of GRU_Z-ET is compared with that of the other three methods in three heavy rainfall cases in China during 2018, namely, the traditional Z-R relationship(Z=300R1.4), the optimal Z-R relationship(Z=79R1.68) and the GRU neural network with only Z as the independent input variable(GRU_Z). The results indicate that the GRU_Z-ET performs the best, while the traditional Z-R relationship performs the worst. The performances of the rest two methods are similar.To further evaluate the performance of the GRU_Z-ET, 200 rainfall events with 21882 total samples during May–July of 2018 are used for statistical analysis. Results demonstrate that the spatial correlation coefficients, threat scores and probability of detection between the observed and estimated precipitation are the largest for the GRU_Z-ET and the smallest for the traditional Z-R relationship, and the root mean square error is just the opposite. In addition, these statistics of GRU_Z are similar to those of optimal Z-R relationship. Thus, it can be concluded that the performance of the GRU_ZET is the best in the four methods for the quantitative precipitation estimation. 展开更多
关键词 quantitative precipitation estimation gated recurrent unit neural network Z-R relationship echo-top height
下载PDF
Predicting Wavelet-Transformed Stock Prices Using a Vanishing Gradient Resilient Optimized Gated Recurrent Unit with a Time Lag
5
作者 Luyandza Sindi Mamba Antony Ngunyi Lawrence Nderu 《Journal of Data Analysis and Information Processing》 2023年第1期49-68,共20页
The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models a... The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics. 展开更多
关键词 Optimized gated recurrent unit Approximation Coefficient Stationary Wavelet Transform Activation Function Time Lag
下载PDF
Speech Separation Algorithm Using Gated Recurrent Network Based on Microphone Array
6
作者 Xiaoyan Zhao Lin Zhou +2 位作者 Yue Xie Ying Tong Jingang Shi 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3087-3100,共14页
Speech separation is an active research topic that plays an important role in numerous applications,such as speaker recognition,hearing pros-thesis,and autonomous robots.Many algorithms have been put forward to improv... Speech separation is an active research topic that plays an important role in numerous applications,such as speaker recognition,hearing pros-thesis,and autonomous robots.Many algorithms have been put forward to improve separation performance.However,speech separation in reverberant noisy environment is still a challenging task.To address this,a novel speech separation algorithm using gate recurrent unit(GRU)network based on microphone array has been proposed in this paper.The main aim of the proposed algorithm is to improve the separation performance and reduce the computational cost.The proposed algorithm extracts the sub-band steered response power-phase transform(SRP-PHAT)weighted by gammatone filter as the speech separation feature due to its discriminative and robust spatial position in formation.Since the GRU net work has the advantage of processing time series data with faster training speed and fewer training parameters,the GRU model is adopted to process the separation featuresof several sequential frames in the same sub-band to estimate the ideal Ratio Masking(IRM).The proposed algorithm decomposes the mixture signals into time-frequency(TF)units using gammatone filter bank in the frequency domain,and the target speech is reconstructed in the frequency domain by masking the mixture signal according to the estimated IRM.The operations of decomposing the mixture signal and reconstructing the target signal are completed in the frequency domain which can reduce the total computational cost.Experimental results demonstrate that the proposed algorithm realizes omnidirectional speech sep-aration in noisy and reverberant environments,provides good performance in terms of speech quality and intelligibility,and has the generalization capacity to reverberate. 展开更多
关键词 Microphone array speech separation gate recurrent unit network gammatone sub-band steered response power-phase transform spatial spectrum
下载PDF
Real-time analysis and prediction of shield cutterhead torque using optimized gated recurrent unit neural network 被引量:6
7
作者 Song-Shun Lin Shui-Long Shen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1232-1240,共9页
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec... An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling. 展开更多
关键词 Earth pressure balance(EPB)shield tunneling Cutterhead torque(CHT)prediction Particle swarm optimization(PSO) gated recurrent unit(GRU)neural network
下载PDF
Gated recurrent unit model for a sequence tagging problem 被引量:1
8
作者 Rekia Kadari Zhang Yu +1 位作者 Zhang Weinan Liu Ting 《High Technology Letters》 EI CAS 2019年第1期81-87,共7页
Combinatory categorial grammer(CCG) supertagging is an important subtask that takes place before full parsing and can benefit many natural language processing(NLP) tasks like question answering and machine translation... Combinatory categorial grammer(CCG) supertagging is an important subtask that takes place before full parsing and can benefit many natural language processing(NLP) tasks like question answering and machine translation. CCG supertagging can be regarded as a sequence labeling problem that remains a challenging problem where each word is assigned to a CCG lexical category and the number of the probably associated CCG supertags to each word is large. To address this, recently recurrent neural networks(RNNs), as extremely powerful sequential models, have been proposed for CCG supertagging and achieved good performances. In this paper, a variant of recurrent networks is proposed whose design makes it much easier to train and memorize information for long range dependencies based on gated recurrent units(GRUs), which have been recently introduced on some but not all tasks. Results of the experiments revealed the effectiveness of the proposed method on the CCGBank datasets and show that the model has comparable accuracy with the previously proposed models for CCG supertagging. 展开更多
关键词 combinatory categorial grammer (CCG) CCG supertagging DEEP LEARNING gated recurrent unit (GRU)
下载PDF
Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing 被引量:1
9
作者 Weixin Xu Huihui Miao +3 位作者 Zhibin Zhao Jinxin Liu Chuang Sun Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期130-145,共16页
As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symboli... As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models. 展开更多
关键词 Tool wear prediction MULTI-SCALE Convolutional neural networks gated recurrent unit
下载PDF
Micro-seismic Event Detection of Hot Dry Rock based on the Gated Recurrent Unit Model and a Support Vector Machine
10
作者 SUN Feng HU Haotian +4 位作者 ZHAO Fa YANG Xinran CHEN Zubin WU Haidong ZHANG Linyou 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1940-1947,共8页
Micro-seismic monitoring is one of the most critical technologies that guide hydraulic fracturing in hot dry rock resource development. Micro-seismic monitoring requires high precision detection of micro-seismic event... Micro-seismic monitoring is one of the most critical technologies that guide hydraulic fracturing in hot dry rock resource development. Micro-seismic monitoring requires high precision detection of micro-seismic events with a low signal-to-noise ratio. Because of this requirement, we propose a recurrent neural network model named gated recurrent unit and support vector machine(GRU;VM). The proposed model ensures high accuracy while reducing the parameter number and hardware requirement in the training process. Since micro-seismic events in hot dry rock produce large wave amplitudes and strong vibrations, it is difficult to reverse the onset of each individual event. In this study, we utilize a support vector machine(SVM) as a classifier to improve the micro-seismic event detection accuracy. To validate the methodology, we compare the simulation results of the short-term-average to the long-term-average(STA/LTA) method with GRU;VM method by using hot dry rock micro-seismic event data in Qinghai Province, China. Our proposed method has an accuracy of about 95% for identifying micro-seismic events with low signal-to-noise ratios. By ignoring smaller micro-seismic events, the detection procedure can be processed more efficiently, which is able to provide a real-time observation on the types of hydraulic fracturing in the reservoirs. 展开更多
关键词 hot dry rock micro-seismic detection gated recurrent unit support vector machine
下载PDF
Multi-Scale Fusion Model Based on Gated Recurrent Unit for Enhancing Prediction Accuracy of State-of-Charge in Battery Energy Storage Systems
11
作者 Hao Liu Fengwei Liang +2 位作者 Tianyu Hu Jichao Hong Huimin Ma 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期405-414,共10页
Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale featu... Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical BESSs.Pearson correlation analysis is first employed to identify SOC-related parameters.These parameters are then input into a multi-layer GRU for point-wise feature extraction.Concurrently,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time intervals.Ultimately,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are rendered.Following extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction. 展开更多
关键词 Electric vehicle battery energy storage system(BESS) state-of-charge(SOC)prediction gated recurrent unit(GRU) multi-scale fusion(MSF).
原文传递
Soil NOx Emission Prediction via Recurrent Neural Networks
12
作者 Zhaoan Wang Shaoping Xiao +2 位作者 Cheryl Reuben Qiyu Wang Jun Wang 《Computers, Materials & Continua》 SCIE EI 2023年第10期285-297,共13页
This paper presents designing sequence-to-sequence recurrent neural network(RNN)architectures for a novel study to predict soil NOx emissions,driven by the imperative of understanding and mitigating environmental impa... This paper presents designing sequence-to-sequence recurrent neural network(RNN)architectures for a novel study to predict soil NOx emissions,driven by the imperative of understanding and mitigating environmental impact.The study utilizes data collected by the Environmental Protection Agency(EPA)to develop two distinct RNN predictive models:one built upon the long-short term memory(LSTM)and the other utilizing the gated recurrent unit(GRU).These models are fed with a combination of historical and anticipated air temperature,air moisture,and NOx emissions as inputs to forecast future NOx emissions.Both LSTM and GRU models can capture the intricate pulse patterns inherent in soil NOx emissions.Notably,the GRU model emerges as the superior performer,surpassing the LSTM model in predictive accuracy while demonstrating efficiency by necessitating less training time.Intriguingly,the investigation into varying input features reveals that relying solely on past NOx emissions as input yields satisfactory performance,highlighting the dominant influence of this factor.The study also delves into the impact of altering input series lengths and training data sizes,yielding insights into optimal configurations for enhanced model performance.Importantly,the findings promise to advance our grasp of soil NOx emission dynamics,with implications for environmental management strategies.Looking ahead,the anticipated availability of additional measurements is poised to bolster machine-learning model efficacy.Furthermore,the future study will explore physical-based RNNs,a promising avenue for deeper insights into soil NOx emission prediction. 展开更多
关键词 Soil NOx emission long-short term memory gated recurrent unit sequence-to-sequence
下载PDF
An Improved Time Feedforward Connections Recurrent Neural Networks
13
作者 Jin Wang Yongsong Zou Se-Jung Lim 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2743-2755,共13页
Recurrent Neural Networks(RNNs)have been widely applied to deal with temporal problems,such as flood forecasting and financial data processing.On the one hand,traditional RNNs models amplify the gradient issue due to ... Recurrent Neural Networks(RNNs)have been widely applied to deal with temporal problems,such as flood forecasting and financial data processing.On the one hand,traditional RNNs models amplify the gradient issue due to the strict time serial dependency,making it difficult to realize a long-term memory function.On the other hand,RNNs cells are highly complex,which will signifi-cantly increase computational complexity and cause waste of computational resources during model training.In this paper,an improved Time Feedforward Connections Recurrent Neural Networks(TFC-RNNs)model was first proposed to address the gradient issue.A parallel branch was introduced for the hidden state at time t−2 to be directly transferred to time t without the nonlinear transforma-tion at time t−1.This is effective in improving the long-term dependence of RNNs.Then,a novel cell structure named Single Gate Recurrent Unit(SGRU)was presented.This cell structure can reduce the number of parameters for RNNs cell,consequently reducing the computational complexity.Next,applying SGRU to TFC-RNNs as a new TFC-SGRU model solves the above two difficulties.Finally,the performance of our proposed TFC-SGRU was verified through sev-eral experiments in terms of long-term memory and anti-interference capabilities.Experimental results demonstrated that our proposed TFC-SGRU model can cap-ture helpful information with time step 1500 and effectively filter out the noise.The TFC-SGRU model accuracy is better than the LSTM and GRU models regarding language processing ability. 展开更多
关键词 Time feedforward connections long-short term memory gated recurrent unit SGRU RNNs
下载PDF
Short-term load forecasting model based on gated recurrent unit and multi-head attention 被引量:2
14
作者 Li Hao Zhang Linghua +1 位作者 Tong Cheng Zhou Chenyang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2023年第3期25-31,共7页
Short-term load forecasting(STLF)plays a crucial role in the smart grid.However,it is challenging to capture the long-time dependence and the nonlinear relationship due to the comprehensive fluctuations of the electri... Short-term load forecasting(STLF)plays a crucial role in the smart grid.However,it is challenging to capture the long-time dependence and the nonlinear relationship due to the comprehensive fluctuations of the electrical load.In this paper,an STLF model based on gated recurrent unit and multi-head attention(GRU-MA)is proposed to address the aforementioned problems.The proposed model accommodates the time series and nonlinear relationship of load data through gated recurrent unit(GRU)and exploits multi-head attention(MA)to learn the decisive features and long-term dependencies.Additionally,the proposed model is compared with the support vector regression(SVR)model,the recurrent neural network and multi-head attention(RNN-MA)model,the long short-term memory and multi-head attention(LSTM-MA)model,the GRU model,and the temporal convolutional network(TCN)model using the public dataset of the Global Energy Forecasting Competition 2014(GEFCOM2014).The results demonstrate that the GRU-MA model has the best prediction accuracy. 展开更多
关键词 deep learning short-term load forecasting(STLF) gated recurrent unit(GRU) multi-head attention(MA)
原文传递
Machine learning for pore-water pressure time-series prediction:Application of recurrent neural networks 被引量:13
15
作者 Xin Wei Lulu Zhang +2 位作者 Hao-Qing Yang Limin Zhang Yang-Ping Yao 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期453-467,共15页
Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicabilit... Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy. 展开更多
关键词 Pore-water pressure SLOPE Multi-layer perceptron recurrent neural networks Long short-term memory gated recurrent unit
下载PDF
Practical Options for Adopting Recurrent Neural Network and Its Variants on Remaining Useful Life Prediction 被引量:1
16
作者 Youdao Wang Yifan Zhao Sri Addepalli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期32-51,共20页
The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been... The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been used for RUL prediction and achieved great success.Because the data is often time-sequential,recurrent neural network(RNN)has attracted significant interests due to its efficiency in dealing with such data.This paper systematically reviews RNN and its variants for RUL prediction,with a specific focus on understanding how different components(e.g.,types of optimisers and activation functions)or parameters(e.g.,sequence length,neuron quantities)affect their performance.After that,a case study using the well-studied NASA’s C-MAPSS dataset is presented to quantitatively evaluate the influence of various state-of-the-art RNN structures on the RUL prediction performance.The result suggests that the variant methods usually perform better than the original RNN,and among which,Bi-directional Long Short-Term Memory generally has the best performance in terms of stability,precision and accuracy.Certain model structures may fail to produce valid RUL prediction result due to the gradient vanishing or gradient exploring problem if the parameters are not chosen appropriately.It is concluded that parameter tuning is a crucial step to achieve optimal prediction performance. 展开更多
关键词 Remaining useful life prediction Deep learning recurrent neural network Long short-term memory bi-directional long short-term memory gated recurrent unit
下载PDF
Multivariety and multimanufacturer drug identification based on near-infrared spectroscopy and recurrent neural network 被引量:1
17
作者 Wenjie Zeng Yunqi Qiu +2 位作者 Yanting Huang Qingping Sun Zhuoya Luo 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第4期86-96,共11页
Near-infrared(NIR)spectral analysis,which has the advantages of rapidness,nondestruction and high-efficiency,is widely used in the detection of feed,food and mineral.In terms of qualitative identification,it can also ... Near-infrared(NIR)spectral analysis,which has the advantages of rapidness,nondestruction and high-efficiency,is widely used in the detection of feed,food and mineral.In terms of qualitative identification,it can also be used for the discriminant analysis of medicines.Long short-term memory(LSTM)neural network,bidirectional long short-term memory(BiLSTM)neural network and gated recurrent unit(GRU)network are variants of the recurrent neural network(RNN).The potential relationship between nonlinear features learned from the sequence by these variants is used to complete the missions infields such as natural language processing,signal classification and video analysis.Since the effect of these variants in drug identification is still to be studied,this paper constructs a multiclassifier of these three variants,using compoundα-keto acid tablets produced by four manufacturers and repaglinide tablets produced by five manufacturers as the research object.Then,the paper analyzes the impacts of seven different preprocessed methods on the drug NIR data by constructing different layers of LSTM,BiLSTM and GRU networks and compares different classification model indicators and training time of each model.When the spectrum data are pre-processed by z-score normalization,the GRU-3 model has the best accuracy in all models.The BiLSTM models are better for analyzing high coincidence data.The method proposed in this paper can be further extended to other NIR spectroscopy data sets. 展开更多
关键词 Near-infrared spectroscopy long short-term memory bidirectional long short-term memory gated recurrent unit multiple classifiers.
下载PDF
基于二次分解双向门控单元新型电力系统超短期负荷预测 被引量:1
18
作者 王德文 安涵 《电力科学与工程》 2024年第3期1-9,共9页
在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对... 在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对电力负荷历史序列进行初步分解,使负荷序列更加平稳。随后,对初步分解得到的强非平稳分量运用连续变分模态分解进行二次分解,降低其预测难度。最后,为充分学习电力负荷的时序特征,在预测过程构建基于双向门控循环单元的超短期电力负荷预测模型。实验结果表明,该模型相较于现有优秀预测模型有更高的预测精度。 展开更多
关键词 新型电力系统 超短期负荷 负荷预测 二次分解 双向门控循环单元
下载PDF
基于动态工况实测数据图像和深度学习的锂电池容量估计方法
19
作者 毕贵红 黄泽 +2 位作者 谢旭 张文英 骆钊 《高电压技术》 EI CAS CSCD 北大核心 2024年第4期1488-1498,I0031-I0033,共14页
针对实际应用中基于动态工况下电池状态参数的片段数据进行电池健康状态(state of health,SOH)实时估计的问题,提出基于动态工况下锂离子电池状态参数(电压、电流、温度)实测数据二维特征图像和深度学习的锂离子电池容量估计算法。首先... 针对实际应用中基于动态工况下电池状态参数的片段数据进行电池健康状态(state of health,SOH)实时估计的问题,提出基于动态工况下锂离子电池状态参数(电压、电流、温度)实测数据二维特征图像和深度学习的锂离子电池容量估计算法。首先,将动态工况下电池状态参数监测量(电压、电流和温度)的片段数据转化为二维特征图像。其次,提出基于残差卷积神经网络(residual convolutional neural network,Res-CNN)和门控循环单元(gate recurrent unit,GRU)网络结合的多通道深度学习模型Res-CNN-GRU,以构建动态工况下电池状态参数特征图像和SOH之间的复杂非线性关系,其中电压、电流和温度的二维特征图像以三通道的方式输入到Res-CNN-GRU模型中,模型输出为对应电池的相邻参考充放电循环实验所获得容量的差值。研究结果表明:此方法在锂电池随机充放电工况下对电池健康状态估计效果更佳,且Res-CNN-GRU模型的泛化性和全局特征提取能力较强。论文研究为现实工况下电池健康状态估计的进一步深入研究提供了参考。 展开更多
关键词 锂离子电池 动态条件 健康状态 深度学习 残差网络 门控循环单元循环神经网络
下载PDF
基于深度学习的盾构机土舱压力场预测方法
20
作者 张超 朱闽湘 +2 位作者 郎志雄 陈仁朋 程红战 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第2期307-315,共9页
土舱压力是盾构机受力状态和掌子面稳定等核心问题中的关键因素。土舱压力具有显著的空间变异性,其形成演化机制源于装备与岩土之间的复杂耦合作用,与地质特征、掘进参数等多源参数相关。然而,现有土舱压力预测方法一般未考虑空间分布... 土舱压力是盾构机受力状态和掌子面稳定等核心问题中的关键因素。土舱压力具有显著的空间变异性,其形成演化机制源于装备与岩土之间的复杂耦合作用,与地质特征、掘进参数等多源参数相关。然而,现有土舱压力预测方法一般未考虑空间分布特征或地质参数影响。针对该问题,提出了一种基于空间分布物理特征函数导引深度学习的盾构机土舱压力场预测方法。该方法构建物理特征函数用于解耦土舱压力空间分布特征,采用卷积神经网络和门控循环单元分别提取多源参数历史信息的空间特征和特征系数的时序特征,结合多源参数实时信息对特征系数进行预测,从而实现土舱压力场的预测。以长沙地铁四号线某区段为案例,利用该方法准确预测了土舱压力空间分布实测数据,准确率高达0.98,验证了所提方法的有效性。敏感性分析表明,不同地层中土舱压力空间分布特征系数的主要敏感参数基本一致,但其敏感度随地层地质条件的变化规律差异显著,可为复杂地层盾构机土舱压力精细化调控提供参考。 展开更多
关键词 土舱压力场 卷积神经网络 门控循环单元 物理特征函数 土压平衡盾构机 盾构隧道
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部