The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-shor...The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%.展开更多
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w...Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.展开更多
Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In ...Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In this paper,considering the model-free purpose,we present an online Multi-Target Intelligent Tracking(MTIT)algorithm based on a Deep Long-Short Term Memory(DLSTM)network for complex tracking requirements,named the MTIT-DLSTM algorithm.Firstly,to distinguish trajectories and concatenate the tracking task in a time sequence,we define a target tuple set that is the labeled Random Finite Set(RFS).Then,prediction and update blocks based on the DLSTM network are constructed to predict and estimate the state of targets,respectively.Further,the prediction block can learn the movement trend from the historical state sequence,while the update block can capture the noise characteristic from the historical measurement sequence.Finally,a data association scheme based on Hungarian algorithm and the heuristic track management strategy are employed to assign measurements to targets and adapt births and deaths.Experimental results manifest that,compared with the existing tracking algorithms,our proposed MTIT-DLSTM algorithm can improve effectively the accuracy and robustness in estimating the state of targets appearing at random positions,and be applied to linear and nonlinear multi-target tracking scenarios.展开更多
Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognit...Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics.In this paper,a single-layer convolutional neural network(CNN)was trained to recognize three qualitatively different subsonic buffet flows(periodic,quasi-periodic and chaotic)over a high-incidence airfoil,and a near-perfect accuracy was obtained with only a small training dataset.The convolutional kernels and corresponding feature maps,developed by the model with no temporal information provided,identified large-scale coherent structures in agreement with those known to be associated with buffet flows.Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored.The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers.展开更多
Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model becaus...Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model because the connections among stocks are not physically presented and need to be estimated from volatile data.Motivated by this observation,we propose a framework that incorporates the inter-connection of firms to forecast stock prices.To effectively utilize a large set of fundamental features,we further design a novel pipeline.First,we use variational autoencoder(VAE)to reduce the dimension of stock fundamental information and then cluster stocks into a graph structure(fundamentally clustering).Second,a hybrid model of graph convolutional network and long-short term memory network(GCN-LSTM)with an adjacency graph matrix(learnt from VAE)is proposed for graph-structured stock market forecasting.Experiments on minute-level U.S.stock market data demonstrate that our model effectively captures both spatial and temporal signals and achieves superior improvement over baseline methods.The proposed model is promising for other applications in which there is a possible but hidden spatial dependency to improve time-series prediction.展开更多
High-frequency(HF)and ultrahigh-frequency(UHF)dual-band radio frequency identification(RFID)tags with both near-field and farfield communication can meet different application scenarios.However,it is time-consuming to...High-frequency(HF)and ultrahigh-frequency(UHF)dual-band radio frequency identification(RFID)tags with both near-field and farfield communication can meet different application scenarios.However,it is time-consuming to calculate the return loss of a UHF antenna in a dualband tag antenna using electromagnetic(EM)simulators.To overcome this,the present work proposes a model of a multi-scale convolutional neural network stacked with long and short-term memory(MSCNN-LSTM)for predicting the return loss of UHF antennas instead of EM simulators.In the proposed MSCNN-LSTM,the MSCNN has three branches,which include three convolution layers with different kernel sizes and numbers.Therefore,MSCNN can extract fine-grain localized information of the antenna and overall features.The LSTM can effectively learn the EM characteristics of different structures of the antenna to improve the prediction accuracy of the model.Experimental results show that the mean absolute error(0.0073),mean square error(0.00032),and root mean square error(0.01814)of theMSCNNLSTM are better than those of other prediction methods.In predicting the return loss of 100UHFantennas,compared with the simulation time of 4800 s for High Frequency Structure Simulator(HFSS),MSCNN-LSTM takes only 0.927519 s under the premise of ensuring prediction accuracy,significantly reducing the calculation time,which provides a basis for the rapid design of HF-UHF RFID tag antenna.ThenMSCNN-LSTM is used to determine the dimensions of the UHF antenna quickly.The return loss of the designed dualband RFID tag antenna is−58.76 and−22.63 dB at 13.56 and 915 MHz,respectively,achieving the desired goal.展开更多
Suspicious fall events are particularly significant hazards for the safety of patients and elders.Recently,suspicious fall event detection has become a robust research case in real-time monitoring.This paper aims to d...Suspicious fall events are particularly significant hazards for the safety of patients and elders.Recently,suspicious fall event detection has become a robust research case in real-time monitoring.This paper aims to detect suspicious fall events during video monitoring of multiple people in different moving back-grounds in an indoor environment;it is further proposed to use a deep learning method known as Long Short Term Memory(LSTM)by introducing visual atten-tion-guided mechanism along with a bi-directional LSTM model.This method contributes essential information on the temporal and spatial locations of‘suspi-cious fall’events in learning the video frame in both forward and backward direc-tions.The effective“You only look once V4”(YOLO V4)–a real-time people detection system illustrates the detection of people in videos,followed by a track-ing module to get their trajectories.Convolutional Neural Network(CNN)fea-tures are extracted for each person tracked through bounding boxes.Subsequently,a visual attention-guided Bi-directional LSTM model is proposed for the final suspicious fall event detection.The proposed method is demonstrated using two different datasets to illustrate the efficiency.The proposed method is evaluated by comparing it with other state-of-the-art methods,showing that it achieves 96.9%accuracy,good performance,and robustness.Hence,it is accep-table to monitor and detect suspicious fall events.展开更多
A deep learning approach using long-short term memory(LSTM)networks was implemented in this study to classify the sound of short-term feeding behaviour of sheep,including biting,chewing,bolus regurgitation,and ruminat...A deep learning approach using long-short term memory(LSTM)networks was implemented in this study to classify the sound of short-term feeding behaviour of sheep,including biting,chewing,bolus regurgitation,and rumination chewing.The original acoustic signal was split into sound episodes using an endpoint detection method,where the thresholds of short-term energy and average zero-crossing rate were utilized.A discrete wavelet transform(DWT),Mel-frequency cepstral,and principal-component analysis(PCA)were integrated to extract the dimensionally reduced DWT based Mel-frequency cepstral coefficients(denoted by PW_MFCC)for each sound episode.Then,LSTM networks were employed to train classifiers for sound episode category classification.The performances of the LSTM classifiers with original Mel-frequency cepstral coefficients(MFCC),DWT based MFCC(denoted by W_MFCC),and PW_MFCC as the input feature coefficients were compared.Comparison results demonstrated that the introduction of DWT improved the classifier performance effectively,and PCA reduced the computational overhead without degrading classifier performance.The overall accuracy and comprehensive F1-score of the PW_MFCC based LSTM classifier were 94.97%and 97.41%,respectively.The classifier established in this study provided a foundation for an automatic identification system for sick sheep with abnormal feeding and rumination behaviour pattern.展开更多
Brain-Computer Interface(BCI)is a system that provides a link between the brain of humans and the hardware directly.The recorded brain data is converted directly to the machine that can be used to control external dev...Brain-Computer Interface(BCI)is a system that provides a link between the brain of humans and the hardware directly.The recorded brain data is converted directly to the machine that can be used to control external devices.There are four major components of the BCI system:acquiring signals,preprocessing of acquired signals,features extraction,and classification.In traditional machine learning algorithms,the accuracy is insignificant and not up to the mark for the classification of multi-class motor imagery data.The major reason for this is,features are selected manually,and we are not able to get those features that give higher accuracy results.In this study,motor imagery(MI)signals have been classified using different deep learning algorithms.We have explored two different methods:Artificial Neural Network(ANN)and Long Short-Term Memory(LSTM).We test the classification accuracy on two datasets:BCI competition III-dataset IIIa and BCI competition IV-dataset IIa.The outcome proved that deep learning algorithms provide greater accuracy results than traditional machine learning algorithms.Amongst the deep learning classifiers,LSTM outperforms the ANN and gives higher classification accuracy of 96.2%.展开更多
Short-term water demand forecasting provides guidance on real-time water allocation in the water supply network, which help water utilities reduce energy cost and avoid potential accidents. Although a variety of metho...Short-term water demand forecasting provides guidance on real-time water allocation in the water supply network, which help water utilities reduce energy cost and avoid potential accidents. Although a variety of methods have been proposed to improve forecast accuracy, it is still difficult for statistical models to learn the periodic patterns due to the chaotic nature of the water demand data with high temporal resolution. To overcome this issue from the perspective of improving data predictability, we proposed a hybrid Wavelet-CNN-LSTM model, that combines time-frequency decomposition characteristics of Wavelet Multi-Resolution Analysis (MRA) and implement it into an advanced deep learning model, CNN-LSTM. Four models - ANN, Conv1D, LSTM, GRUN - are used to compare with Wavelet-CNN-LSTM, and the results show that Wavelet-CNN-LSTM outperforms the other models both in single-step and multi-steps prediction. Besides, further mechanistic analysis revealed that MRA produce significant effect on improving model accuracy.展开更多
Crude oil price prediction is a challenging task in oil producing countries.Its price is among the most complex and tough to model because fluctuations of price of crude oil are highly irregular,nonlinear and varies d...Crude oil price prediction is a challenging task in oil producing countries.Its price is among the most complex and tough to model because fluctuations of price of crude oil are highly irregular,nonlinear and varies dynamically with high uncertainty.This paper proposed a hybrid model for crude oil price prediction that uses the complex network analysis and long short-term memory(LSTM)of the deep learning algorithms.The complex network analysis tool called the visibility graph is used to map the dataset on a network and K-core centrality was employed to extract the non-linearity features of crude oil and reconstruct the dataset.The complex network analysis is carried out in order to preprocess the original data to extract the non-linearity features and to reconstruct the data.Thereafter,LSTM was employed to model the reconstructed data.To verify the result,we compared the empirical results with other research in the literature.The experiments show that the proposed model has higher accuracy,and is more robust and reliable.展开更多
The network traffic prediction is important for service quality control in computer network.The performance of the traditional prediction method significantly degrades for the burst short-term flow.In view of the prob...The network traffic prediction is important for service quality control in computer network.The performance of the traditional prediction method significantly degrades for the burst short-term flow.In view of the problem,this paper proposes a double LSTMs structure,one of which acts as the main flow predictor,another as the detector of the time the burst flow starts at.The two LSTM units can exchange information about their internal states,and the predictor uses the detector’s information to improve the accuracy of the prediction.A training algorithm is developed specially to train the structure offline.To obtain the prediction online,a pulse series is used as a simulant of the burst event.A simulation experiment is designed to test performance of the predictor.The results of the experiment show that the prediction accuracy of the double LSTM structure is significantly improved,compared with the traditional single LSTM structure.展开更多
Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and contro...Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and controlling product quality in MMP remains an urgent problem in intelligent manufacturing. A novel predict-prevention quality control method in MMP towards ZDM is proposed, including quality characteristics monitoring, key quality characteristics prediction, and assembly quality optimization. The stability of the quality characteristics is detected by analyzing the distribution of quality characteristics. By considering the correlations between different quality characteristics, a deep supervised long-short term memory (SLSTM) prediction network is built for time series prediction of quality characteristics. A long-short term memory-genetic algorithm (LSTM-GA) network is proposed to optimize the assembly quality. By utilizing the proposed quality control method in MMP, unqualified products can be avoided, and ZDM of MMP is implemented. Extensive empirical evaluations on the MMP of compressors validate the applicability and practicability of the proposed method.展开更多
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFC0407004)the Natural Science Foundation of China(Grants No.51939004 and 11772116).
文摘The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%.
基金support of national natural science foundation of China(No.52067021)natural science foundation of Xinjiang(2022D01C35)+1 种基金excellent youth scientific and technological talents plan of Xinjiang(No.2019Q012)major science&technology special project of Xinjiang Uygur Autonomous Region(2022A01002-2)。
文摘Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.
基金supported by the National Natural Science Foundation of China(No.62276204)Open Foundation of Science and Technology on Electronic Information Control Laboratory,Natural Science Basic Research Program of Shanxi,China(Nos.2022JM-340 and 2023-JC-QN-0710)China Postdoctoral Science Foundation(Nos.2020T130494 and 2018M633470).
文摘Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In this paper,considering the model-free purpose,we present an online Multi-Target Intelligent Tracking(MTIT)algorithm based on a Deep Long-Short Term Memory(DLSTM)network for complex tracking requirements,named the MTIT-DLSTM algorithm.Firstly,to distinguish trajectories and concatenate the tracking task in a time sequence,we define a target tuple set that is the labeled Random Finite Set(RFS).Then,prediction and update blocks based on the DLSTM network are constructed to predict and estimate the state of targets,respectively.Further,the prediction block can learn the movement trend from the historical state sequence,while the update block can capture the noise characteristic from the historical measurement sequence.Finally,a data association scheme based on Hungarian algorithm and the heuristic track management strategy are employed to assign measurements to targets and adapt births and deaths.Experimental results manifest that,compared with the existing tracking algorithms,our proposed MTIT-DLSTM algorithm can improve effectively the accuracy and robustness in estimating the state of targets appearing at random positions,and be applied to linear and nonlinear multi-target tracking scenarios.
文摘Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics,with predictive accuracy being a central motivation for employing neural networks.However,the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics.In this paper,a single-layer convolutional neural network(CNN)was trained to recognize three qualitatively different subsonic buffet flows(periodic,quasi-periodic and chaotic)over a high-incidence airfoil,and a near-perfect accuracy was obtained with only a small training dataset.The convolutional kernels and corresponding feature maps,developed by the model with no temporal information provided,identified large-scale coherent structures in agreement with those known to be associated with buffet flows.Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored.The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers.
文摘Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model because the connections among stocks are not physically presented and need to be estimated from volatile data.Motivated by this observation,we propose a framework that incorporates the inter-connection of firms to forecast stock prices.To effectively utilize a large set of fundamental features,we further design a novel pipeline.First,we use variational autoencoder(VAE)to reduce the dimension of stock fundamental information and then cluster stocks into a graph structure(fundamentally clustering).Second,a hybrid model of graph convolutional network and long-short term memory network(GCN-LSTM)with an adjacency graph matrix(learnt from VAE)is proposed for graph-structured stock market forecasting.Experiments on minute-level U.S.stock market data demonstrate that our model effectively captures both spatial and temporal signals and achieves superior improvement over baseline methods.The proposed model is promising for other applications in which there is a possible but hidden spatial dependency to improve time-series prediction.
基金The research work is carried out under the Beijing Natural Science Foundation-Beijing Education Commission Joint Project(KZ202210015020)Discipline Construction and Postgraduate Education Project of BIGC(No.21090122005)BIGC Project(Ee202204).
文摘High-frequency(HF)and ultrahigh-frequency(UHF)dual-band radio frequency identification(RFID)tags with both near-field and farfield communication can meet different application scenarios.However,it is time-consuming to calculate the return loss of a UHF antenna in a dualband tag antenna using electromagnetic(EM)simulators.To overcome this,the present work proposes a model of a multi-scale convolutional neural network stacked with long and short-term memory(MSCNN-LSTM)for predicting the return loss of UHF antennas instead of EM simulators.In the proposed MSCNN-LSTM,the MSCNN has three branches,which include three convolution layers with different kernel sizes and numbers.Therefore,MSCNN can extract fine-grain localized information of the antenna and overall features.The LSTM can effectively learn the EM characteristics of different structures of the antenna to improve the prediction accuracy of the model.Experimental results show that the mean absolute error(0.0073),mean square error(0.00032),and root mean square error(0.01814)of theMSCNNLSTM are better than those of other prediction methods.In predicting the return loss of 100UHFantennas,compared with the simulation time of 4800 s for High Frequency Structure Simulator(HFSS),MSCNN-LSTM takes only 0.927519 s under the premise of ensuring prediction accuracy,significantly reducing the calculation time,which provides a basis for the rapid design of HF-UHF RFID tag antenna.ThenMSCNN-LSTM is used to determine the dimensions of the UHF antenna quickly.The return loss of the designed dualband RFID tag antenna is−58.76 and−22.63 dB at 13.56 and 915 MHz,respectively,achieving the desired goal.
文摘Suspicious fall events are particularly significant hazards for the safety of patients and elders.Recently,suspicious fall event detection has become a robust research case in real-time monitoring.This paper aims to detect suspicious fall events during video monitoring of multiple people in different moving back-grounds in an indoor environment;it is further proposed to use a deep learning method known as Long Short Term Memory(LSTM)by introducing visual atten-tion-guided mechanism along with a bi-directional LSTM model.This method contributes essential information on the temporal and spatial locations of‘suspi-cious fall’events in learning the video frame in both forward and backward direc-tions.The effective“You only look once V4”(YOLO V4)–a real-time people detection system illustrates the detection of people in videos,followed by a track-ing module to get their trajectories.Convolutional Neural Network(CNN)fea-tures are extracted for each person tracked through bounding boxes.Subsequently,a visual attention-guided Bi-directional LSTM model is proposed for the final suspicious fall event detection.The proposed method is demonstrated using two different datasets to illustrate the efficiency.The proposed method is evaluated by comparing it with other state-of-the-art methods,showing that it achieves 96.9%accuracy,good performance,and robustness.Hence,it is accep-table to monitor and detect suspicious fall events.
基金This work was supported by the Basic Research Project of the Science and Technology Department of Qinghai province,China(Grant No.2020-ZJ-716)the Key Research and Development Project of the Science and Technology Department of Jiangsu province,China(Grant No.BE2018433)the Key Research and Development Project of the Science and Technology Department of Qinghai Province,China(Grant No.2017-HZ-813).
文摘A deep learning approach using long-short term memory(LSTM)networks was implemented in this study to classify the sound of short-term feeding behaviour of sheep,including biting,chewing,bolus regurgitation,and rumination chewing.The original acoustic signal was split into sound episodes using an endpoint detection method,where the thresholds of short-term energy and average zero-crossing rate were utilized.A discrete wavelet transform(DWT),Mel-frequency cepstral,and principal-component analysis(PCA)were integrated to extract the dimensionally reduced DWT based Mel-frequency cepstral coefficients(denoted by PW_MFCC)for each sound episode.Then,LSTM networks were employed to train classifiers for sound episode category classification.The performances of the LSTM classifiers with original Mel-frequency cepstral coefficients(MFCC),DWT based MFCC(denoted by W_MFCC),and PW_MFCC as the input feature coefficients were compared.Comparison results demonstrated that the introduction of DWT improved the classifier performance effectively,and PCA reduced the computational overhead without degrading classifier performance.The overall accuracy and comprehensive F1-score of the PW_MFCC based LSTM classifier were 94.97%and 97.41%,respectively.The classifier established in this study provided a foundation for an automatic identification system for sick sheep with abnormal feeding and rumination behaviour pattern.
基金This research was financially supported in part by the Ministry of Trade,Industry and Energy(MOTIE)and Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D program.(Project No.P0016038)in part by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2021-2016-0-00312)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation).
文摘Brain-Computer Interface(BCI)is a system that provides a link between the brain of humans and the hardware directly.The recorded brain data is converted directly to the machine that can be used to control external devices.There are four major components of the BCI system:acquiring signals,preprocessing of acquired signals,features extraction,and classification.In traditional machine learning algorithms,the accuracy is insignificant and not up to the mark for the classification of multi-class motor imagery data.The major reason for this is,features are selected manually,and we are not able to get those features that give higher accuracy results.In this study,motor imagery(MI)signals have been classified using different deep learning algorithms.We have explored two different methods:Artificial Neural Network(ANN)and Long Short-Term Memory(LSTM).We test the classification accuracy on two datasets:BCI competition III-dataset IIIa and BCI competition IV-dataset IIa.The outcome proved that deep learning algorithms provide greater accuracy results than traditional machine learning algorithms.Amongst the deep learning classifiers,LSTM outperforms the ANN and gives higher classification accuracy of 96.2%.
基金financially supported by the National Natural Science Foundation of China(No.51978494)the Science and Technology Innovation Program Project of Shanghai City Investment Co.,Ltd.(No.CTKY-ZDXM-2020-012).
文摘Short-term water demand forecasting provides guidance on real-time water allocation in the water supply network, which help water utilities reduce energy cost and avoid potential accidents. Although a variety of methods have been proposed to improve forecast accuracy, it is still difficult for statistical models to learn the periodic patterns due to the chaotic nature of the water demand data with high temporal resolution. To overcome this issue from the perspective of improving data predictability, we proposed a hybrid Wavelet-CNN-LSTM model, that combines time-frequency decomposition characteristics of Wavelet Multi-Resolution Analysis (MRA) and implement it into an advanced deep learning model, CNN-LSTM. Four models - ANN, Conv1D, LSTM, GRUN - are used to compare with Wavelet-CNN-LSTM, and the results show that Wavelet-CNN-LSTM outperforms the other models both in single-step and multi-steps prediction. Besides, further mechanistic analysis revealed that MRA produce significant effect on improving model accuracy.
文摘Crude oil price prediction is a challenging task in oil producing countries.Its price is among the most complex and tough to model because fluctuations of price of crude oil are highly irregular,nonlinear and varies dynamically with high uncertainty.This paper proposed a hybrid model for crude oil price prediction that uses the complex network analysis and long short-term memory(LSTM)of the deep learning algorithms.The complex network analysis tool called the visibility graph is used to map the dataset on a network and K-core centrality was employed to extract the non-linearity features of crude oil and reconstruct the dataset.The complex network analysis is carried out in order to preprocess the original data to extract the non-linearity features and to reconstruct the data.Thereafter,LSTM was employed to model the reconstructed data.To verify the result,we compared the empirical results with other research in the literature.The experiments show that the proposed model has higher accuracy,and is more robust and reliable.
基金the research plan of State Grid Sichuan Electric Power Company,Chinathe research plan of the 10th Research Institute of China Electronics Technology Group Corporation(KTYT-XY-002).
文摘The network traffic prediction is important for service quality control in computer network.The performance of the traditional prediction method significantly degrades for the burst short-term flow.In view of the problem,this paper proposes a double LSTMs structure,one of which acts as the main flow predictor,another as the detector of the time the burst flow starts at.The two LSTM units can exchange information about their internal states,and the predictor uses the detector’s information to improve the accuracy of the prediction.A training algorithm is developed specially to train the structure offline.To obtain the prediction online,a pulse series is used as a simulant of the burst event.A simulation experiment is designed to test performance of the predictor.The results of the experiment show that the prediction accuracy of the double LSTM structure is significantly improved,compared with the traditional single LSTM structure.
基金The research work presented in this paper is supported by the National Natural Science Foundation of China(Grant No.51675418).
文摘Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and controlling product quality in MMP remains an urgent problem in intelligent manufacturing. A novel predict-prevention quality control method in MMP towards ZDM is proposed, including quality characteristics monitoring, key quality characteristics prediction, and assembly quality optimization. The stability of the quality characteristics is detected by analyzing the distribution of quality characteristics. By considering the correlations between different quality characteristics, a deep supervised long-short term memory (SLSTM) prediction network is built for time series prediction of quality characteristics. A long-short term memory-genetic algorithm (LSTM-GA) network is proposed to optimize the assembly quality. By utilizing the proposed quality control method in MMP, unqualified products can be avoided, and ZDM of MMP is implemented. Extensive empirical evaluations on the MMP of compressors validate the applicability and practicability of the proposed method.