期刊文献+
共找到102,135篇文章
< 1 2 250 >
每页显示 20 50 100
Bi-level programming model for reconstruction of urban branch road network 被引量:6
1
作者 史峰 黄恩厚 +1 位作者 陈群 王英姿 《Journal of Central South University》 SCIE EI CAS 2009年第1期172-176,共5页
Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level progra... Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network. 展开更多
关键词 branch road RECONSTRUCTION bi-level programming model micro-circulation traffic
下载PDF
Bi-Level Programming for the Optimal Nonlinear Distance-Based Transit Fare Structure Incorporating Principal-Agent Game
2
作者 Xin Sun Shuyan Chen Yongfeng Ma 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第5期69-77,共9页
The urban transit fare structure and level can largely affect passengers’travel behavior and route choices.The commonly used transit fare policies in the present transit network would lead to the unbalanced transit a... The urban transit fare structure and level can largely affect passengers’travel behavior and route choices.The commonly used transit fare policies in the present transit network would lead to the unbalanced transit assignment and improper transit resources distribution.In order to distribute transit passenger flow evenly and efficiently,this paper introduces a new distance-based fare pattern with Euclidean distance.A bi-level programming model is developed for determining the optimal distance-based fare pattern,with the path-based stochastic transit assignment(STA)problem with elastic demand being proposed at the lower level.The upper-level intends to address a principal-agent game between transport authorities and transit enterprises pursing maximization of social welfare and financial interest,respectively.A genetic algorithm(GA)is implemented to solve the bi-level model,which is verified by a numerical example to illustrate that the proposed nonlinear distance-based fare pattern presents a better financial performance and distribution effect than other fare structures. 展开更多
关键词 bi-level programming model principal-agent game nonlinear distance-based fare path-based stochastic transit assignment
下载PDF
Bi-level programming model and algorithm for optimizing headway of public transit line
3
作者 张健 李文权 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期471-474,共4页
Due to the fact that headway is a key factor to be considered in bus scheduling, this paper proposes a bi-level programming model for optimizing bus headway in public transit lines. In this model, with the interests o... Due to the fact that headway is a key factor to be considered in bus scheduling, this paper proposes a bi-level programming model for optimizing bus headway in public transit lines. In this model, with the interests of bus companies and passengers in mind, the upper-level model's objective is to minimize the total cost, which is affected by frequency settings, both in time and economy in the transit system. The lower-level model is a transit assignment model used to describe the assignment of passengers' trips to the network based on the optimal bus headway. In order to solve the proposed model, a hybrid genetic algorithm, namely the genetic algorithm and the simulated annealing algorithm (GA-SA), is designed. Finally, the model and the algorithm are tested against the transit data, by taking some of the bus lines of Changzhou city as an example. Results indicate that the proposed model allows supply and demand to be linked, which is reasonable, and the solving algorithm is effective. 展开更多
关键词 HEADWAY bi-level model transit assignment hybrid genetic algorithm
下载PDF
An Alternative Approach for Solving Bi-Level Programming Problems
4
作者 Rashmi Birla Vijay K. Agarwal +1 位作者 Idrees A. Khan Vishnu Narayan Mishra 《American Journal of Operations Research》 2017年第3期239-247,共9页
An algorithm is proposed in this paper for solving two-dimensional bi-level linear programming problems without making a graph. Based on the classification of constraints, algorithm removes all redundant constraints, ... An algorithm is proposed in this paper for solving two-dimensional bi-level linear programming problems without making a graph. Based on the classification of constraints, algorithm removes all redundant constraints, which eliminate the possibility of cycling and the solution of the problem is reached in a finite number of steps. Example to illustrate the method is also included in the paper. 展开更多
关键词 LINEAR programming PROBLEM bi-level programming PROBLEM GRAPH Algorithm
下载PDF
Optimization of the bioconversion of glycerol to ethanol using Escherichia coli by implementing a bi-level programming framework for proposing gene transcription control strategies based on genetic algorithms
5
作者 Carol Milena Barreto-Rodriguez Jessica Paola Ramirez-Angulo +2 位作者 Jorge Mario Gomez-Ramirez Luke Achenie Andres Fernando Gonzalez-Barrios 《Advances in Bioscience and Biotechnology》 2012年第4期336-343,共8页
In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approach... In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approaches that can be exploited in order to enhance yield of processes which are based on biological reactions. Here, we propose an evolutionary approach aiming to suggest different mutant for augmenting ethanol yield using glycerol as substrate in Escherichia coli. We found that this algorithm, even though is far from providing the global optimum, is able to uncover genes that a global optimizer would be incapable of. By over-expressing accB, eno, dapE, and accA mutants in ethanol production was augmented up to 2 fold compared to its counterpart E. coli BW25113. 展开更多
关键词 bi-level Optimization Escherichia coli Metabolic Flux Analysis Genetic Algorithm
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:3
6
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
Adaptive Optimal Discrete-Time Output-Feedback Using an Internal Model Principle and Adaptive Dynamic Programming 被引量:1
7
作者 Zhongyang Wang Youqing Wang Zdzisław Kowalczuk 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期131-140,共10页
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho... In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection. 展开更多
关键词 Adaptive dynamic programming(ADP) internal model principle(IMP) output feedback problem policy iteration(PI) value iteration(VI)
下载PDF
In vivo astrocyte reprogramming following spinal cord injury
8
作者 Yannick N.Gerber Florence E.Perrin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期487-488,共2页
Harmful and helpful roles of astrocytes in spinal cord injury(SCI):SCI induce gradable sensory,motor and autonomic impairments that correlate with the lesion severity and the rostro-caudal location of the injury site.... Harmful and helpful roles of astrocytes in spinal cord injury(SCI):SCI induce gradable sensory,motor and autonomic impairments that correlate with the lesion severity and the rostro-caudal location of the injury site.The absence of spontaneous axonal regeneration after injury results from neuron-intrinsic and neuron-extrinsic parameters.Indeed,not only adult neurons display limited capability to regrow axons but also the injury environment contains inhibitors to axonal regeneration and a lack of growth-promoting factors.Amongst other cell populations that respond to the lesion,reactive astrocytes were first considered as only detrimental to spontaneous axonal regeneration.Indeed,astrocytes. 展开更多
关键词 INJURY IMPAIRMENT programming
下载PDF
Transcriptional reprogramming during human osteoclast differentiation identifies regulators of osteoclast activity
9
作者 Morten S.Hansen Kaja Madsen +6 位作者 Maria Price Kent Søe Yasunori Omata Mario M.Zaiss Caroline M.Gorvin Morten Frost Alexander Rauch 《Bone Research》 SCIE CAS CSCD 2024年第1期180-198,共19页
Enhanced osteoclastogenesis and osteoclast activity contribute to the development of osteoporosis,which is characterized by increased bone resorption and inadequate bone formation.As novel antiosteoporotic therapeutic... Enhanced osteoclastogenesis and osteoclast activity contribute to the development of osteoporosis,which is characterized by increased bone resorption and inadequate bone formation.As novel antiosteoporotic therapeutics are needed,understanding the genetic regulation of human osteoclastogenesis could help identify potential treatment targets.This study aimed to provide an overview of transcriptional reprogramming during human osteoclast differentiation.Osteoclasts were differentiated from CD14+monocytes from eight female donors.RNA sequencing during differentiation revealed 8980 differentially expressed genes grouped into eight temporal patterns conserved across donors.These patterns revealed distinct molecular functions associated with postmenopausal osteoporosis susceptibility genes based on RNA from iliac crest biopsies and bone mineral density SNPs.Network analyses revealed mutual dependencies between temporal expression patterns and provided insight into subtype-specific transcriptional networks.The donor-specific expression patterns revealed genes at the monocyte stage,such as filamin B(FLNB)and oxidized low-density lipoprotein receptor 1(OLR1,encoding LOX-1),that are predictive of the resorptive activity of mature osteoclasts.The expression of differentially expressed G-protein coupled receptors was strong during osteoclast differentiation,and these receptors are associated with bone mineral density SNPs,suggesting that they play a pivotal role in osteoclast differentiation and activity.The regulatory effects of three differentially expressed G-protein coupled receptors were exemplified by in vitro pharmacological modulation of complement 5 A receptor 1(C5AR1),somatostatin receptor 2(SSTR2),and free fatty acid receptor 4(FFAR4/GPR120).Activating C5AR1 enhanced osteoclast formation,while activating SSTR2 decreased the resorptive activity of mature osteoclasts,and activating FFAR4 decreased both the number and resorptive activity of mature osteoclasts.In conclusion,we report the occurrence of transcriptional reprogramming during human osteoclast differentiation and identified SSTR2 and FFAR4 as antiresorptive G-protein coupled receptors and FLNB and LOX-1 as potential molecular markers of osteoclast activity.These data can help future investigations identify molecular regulators of osteoclast differentiation and activity and provide the basis for novel antiosteoporotic targets. 展开更多
关键词 OSTEOCLAST programming identif
下载PDF
Glia-to-neuron reprogramming to the rescue?
10
作者 Jack W.Hickmott Cindi M.Morshead 《Neural Regeneration Research》 SCIE CAS 2025年第5期1395-1396,共2页
Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells c... Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state. 展开更多
关键词 programming PASSING proof
下载PDF
Neurocircuit regeneration by extracellular matrix reprogramming
11
作者 Shengzhang Su Ian N.Levasseur Kimberly M.Alonge 《Neural Regeneration Research》 SCIE CAS 2025年第8期2300-2301,共2页
The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio... The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases. 展开更多
关键词 MATRIX programming
下载PDF
Improved Unit Commitment with Accurate Dynamic Scenarios Clustering Based on Multi-Parametric Programming and Benders Decomposition
12
作者 Zhang Zhi Haiyu Huang +6 位作者 Wei Xiong Yijia Zhou Mingyu Yan Shaolian Xia Baofeng Jiang Renbin Su Xichen Tian 《Energy Engineering》 EI 2024年第6期1557-1576,共20页
Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenario... Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment. 展开更多
关键词 Stochastic programming unit commitment scenarios clustering Benders decomposition multi-parametric programming
下载PDF
Combining reinforcement learning with mathematical programming:An approach for optimal design of heat exchanger networks
13
作者 Hui Tan Xiaodong Hong +4 位作者 Zuwei Liao Jingyuan Sun Yao Yang Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期63-71,共9页
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea... Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales. 展开更多
关键词 Heat exchanger network Reinforcement learning Mathematical programming Process design
下载PDF
Uncertainty quantification of inverse analysis for geomaterials using probabilistic programming
14
作者 Hongbo Zhao Shaojun Li +3 位作者 Xiaoyu Zang Xinyi Liu Lin Zhang Jiaolong Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期895-908,共14页
Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conv... Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems. 展开更多
关键词 Geological engineering Geotechnical engineering Inverse analysis Uncertainty quantification Probabilistic programming
下载PDF
Rapid Prototype Development Approach for Genetic Programming
15
作者 Pei He Lei Zhang 《Journal of Computer and Communications》 2024年第2期67-79,共13页
Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of ... Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals. 展开更多
关键词 Genetic programming Grammatical Evolution Gene Expression programming Regression Analysis Mathematical Modeling Rapid Prototype Development
下载PDF
A Dimensional Reduction Approach Based on Essential Constraints in Linear Programming
16
作者 Eirini I. Nikolopoulou George S. Androulakis 《American Journal of Operations Research》 2024年第1期1-31,共31页
This paper presents a new dimension reduction strategy for medium and large-scale linear programming problems. The proposed method uses a subset of the original constraints and combines two algorithms: the weighted av... This paper presents a new dimension reduction strategy for medium and large-scale linear programming problems. The proposed method uses a subset of the original constraints and combines two algorithms: the weighted average and the cosine simplex algorithm. The first approach identifies binding constraints by using the weighted average of each constraint, whereas the second algorithm is based on the cosine similarity between the vector of the objective function and the constraints. These two approaches are complementary, and when used together, they locate the essential subset of initial constraints required for solving medium and large-scale linear programming problems. After reducing the dimension of the linear programming problem using the subset of the essential constraints, the solution method can be chosen from any suitable method for linear programming. The proposed approach was applied to a set of well-known benchmarks as well as more than 2000 random medium and large-scale linear programming problems. The results are promising, indicating that the new approach contributes to the reduction of both the size of the problems and the total number of iterations required. A tree-based classification model also confirmed the need for combining the two approaches. A detailed numerical example, the general numerical results, and the statistical analysis for the decision tree procedure are presented. 展开更多
关键词 Linear programming Binding Constraints Dimension Reduction Cosine Similarity Decision Analysis Decision Trees
下载PDF
Adaptive path planning for unmanned aerial vehicles based on bi-level programming and variable planning time interval 被引量:7
17
作者 Liu Wei Zheng Zheng Cai Kaiyuan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期646-660,共15页
This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory cap... This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory capability, maneuverability, and flight velocity limit. On the basis of a novel adaptability-involved problem statement, bi-level programming (BLP) and variable planning step techniques are introduced to model the necessary path planning components and then an adaptive path planner is developed for the purpose of adaptation and optimization. Additionally, both probabilistic-risk-based obstacle avoidance and performance limits are described as path search constraints to guarantee path safety and navigability. A discrete-search-based path planning solution, embedded with four optimization strategies, is especially designed for the planner to efficiently generate optimal flight paths in complex operational spaces, within which different surface-to-air missiles (SAMs) are deployed. Simulation results in challenging and stochastic scenarios firstly demonstrate the effectiveness and efficiency of the proposed planner, and then verify its great adaptability and relative stability when planning optimal paths for a UAV with changing or fluctuating performances. 展开更多
关键词 ADAPTIVE bi-level programming Motion planning Unmanned aerial vehicles Variable time interval
原文传递
Stochastic Bi-level Programming Model for Home Healthcare Scheduling Problems Considering the Degree of Satisfaction with Visit Time 被引量:1
18
作者 Huichao Chen Xinggang Luo +1 位作者 Zhongliang Zhang Qing Zhou 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2021年第5期572-599,共28页
Home health care(HHC)includes a wide range of healthcare services that are performed in customers'homes to help them recover.With the constantly increasing demand for health care,HHC policymakers are eager to addr... Home health care(HHC)includes a wide range of healthcare services that are performed in customers'homes to help them recover.With the constantly increasing demand for health care,HHC policymakers are eager to address routing and scheduling problems from the perspective of optimization.In this paper,a bi-level programming model for HHC routing and scheduling problems with stochastic travel times is proposed,in which the degree of satisfaction with the visit time is simultaneously considered.The upper-level model is formulated for customer assignment with the aim of minimizing the total operating cost,and the lower-level model is formulated as a routing problem to maximize the degree of satisfaction with the visit time.Consistent with Stackelberg game decision-making,the trade-off relationship between these two objectives can be achieved spontaneously so as to reach an equilibrium state.A three-stage hybrid algorithm combining an iterated local search framework,which uses a large neighborhood search procedure as a sub-heuristic,a set-partitioning model,and a post-optimization method is developed to solve the proposed model.Numerical experiments on a set of instances including 10 to 100 customers verify the effectiveness of the proposed model and algorithm. 展开更多
关键词 Home health care bi-level programming stochastic travel times ROUTING META-HEURISTIC
原文传递
Sequential quadratic programming-based non-cooperative target distributed hybrid processing optimization method 被引量:2
19
作者 SONG Xiaocheng WANG Jiangtao +3 位作者 WANG Jun SUN Liang FENG Yanghe LI Zhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期129-140,共12页
The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense ... The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples. 展开更多
关键词 non-cooperative target distributed hybrid processing multiple constraint minimum defense cost sequential quadratic programming
下载PDF
A true triaxial strength criterion for rocks by gene expression programming 被引量:1
20
作者 Jian Zhou Rui Zhang +1 位作者 Yingui Qiu Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2508-2520,共13页
Rock strength is a crucial factor to consider when designing and constructing underground projects.This study utilizes a gene expression programming(GEP)algorithm-based model to predict the true triaxial strength of r... Rock strength is a crucial factor to consider when designing and constructing underground projects.This study utilizes a gene expression programming(GEP)algorithm-based model to predict the true triaxial strength of rocks,taking into account the influence of rock genesis on their mechanical behavior during the model building process.A true triaxial strength criterion based on the GEP model for igneous,metamorphic and magmatic rocks was obtained by training the model using collected data.Compared to the modified Weibols-Cook criterion,the modified Mohr-Coulomb criterion,and the modified Lade criterion,the strength criterion based on the GEP model exhibits superior prediction accuracy performance.The strength criterion based on the GEP model has better performance in R2,RMSE and MAPE for the data set used in this study.Furthermore,the strength criterion based on the GEP model shows greater stability in predicting the true triaxial strength of rocks across different types.Compared to the existing strength criterion based on the genetic programming(GP)model,the proposed criterion based on GEP model achieves more accurate predictions of the variation of true triaxial strength(s1)with intermediate principal stress(s2).Finally,based on the Sobol sensitivity analysis technique,the effects of the parameters of the three obtained strength criteria on the true triaxial strength of the rock are analysed.In general,the proposed strength criterion exhibits superior performance in terms of both accuracy and stability of prediction results. 展开更多
关键词 Gene expression programming(GEP) True triaxial strength Rock failure criteria Intermediate principal stress
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部