Bi2Sn2O7是一种特殊的烧绿石结构复杂氧化物,具有可见响应光催化性能,其带隙约为2.61 e V。采用水热法合成出棒状Bi2Sn2O7和颗粒组成的球形Bi2Sn2O7光催化材料,发现通过改变反应物的添加次序,可以产生不同的成核形式,从而导致产物的最...Bi2Sn2O7是一种特殊的烧绿石结构复杂氧化物,具有可见响应光催化性能,其带隙约为2.61 e V。采用水热法合成出棒状Bi2Sn2O7和颗粒组成的球形Bi2Sn2O7光催化材料,发现通过改变反应物的添加次序,可以产生不同的成核形式,从而导致产物的最终形貌不同。在可见光激发下,以罗丹明B为目标降解物进行了产物光催化性能的表征。由纳米颗粒组成的球状Bi2Sn2O7表现出更强的光催化性能,100 min时降解率达98%。通过光催化过程中的自由基淬灭反应,发现Bi2Sn2O7降解有机污染物的主要活性物种为超氧自由基和空穴。展开更多
本文采用水热法制备了γ-Bi_2Sn_2O_7并研究了其在可见光区的光电响应。Bi_2Sn_2O_7的晶体结构和光电响应特性分别用X射线衍射和表面光电压谱进行表征。研究结果表明,合成的Bi_2Sn_2O_7呈现γ相立方结构,通过吸收光谱估算光学带隙为2.67...本文采用水热法制备了γ-Bi_2Sn_2O_7并研究了其在可见光区的光电响应。Bi_2Sn_2O_7的晶体结构和光电响应特性分别用X射线衍射和表面光电压谱进行表征。研究结果表明,合成的Bi_2Sn_2O_7呈现γ相立方结构,通过吸收光谱估算光学带隙为2.67 e V,比α-Bi_2O_3(2.85 e V)的光学带隙小。Bi_2Sn_2O_7的光电响应相对于α-Bi_2O_3在可见光区展现出一定的优势,同时对外加电压有很强的响应。展开更多
文摘Bi2Sn2O7是一种特殊的烧绿石结构复杂氧化物,具有可见响应光催化性能,其带隙约为2.61 e V。采用水热法合成出棒状Bi2Sn2O7和颗粒组成的球形Bi2Sn2O7光催化材料,发现通过改变反应物的添加次序,可以产生不同的成核形式,从而导致产物的最终形貌不同。在可见光激发下,以罗丹明B为目标降解物进行了产物光催化性能的表征。由纳米颗粒组成的球状Bi2Sn2O7表现出更强的光催化性能,100 min时降解率达98%。通过光催化过程中的自由基淬灭反应,发现Bi2Sn2O7降解有机污染物的主要活性物种为超氧自由基和空穴。
文摘本文采用水热法制备了γ-Bi_2Sn_2O_7并研究了其在可见光区的光电响应。Bi_2Sn_2O_7的晶体结构和光电响应特性分别用X射线衍射和表面光电压谱进行表征。研究结果表明,合成的Bi_2Sn_2O_7呈现γ相立方结构,通过吸收光谱估算光学带隙为2.67 e V,比α-Bi_2O_3(2.85 e V)的光学带隙小。Bi_2Sn_2O_7的光电响应相对于α-Bi_2O_3在可见光区展现出一定的优势,同时对外加电压有很强的响应。