Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-co...Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels.Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature.Due to the intensive theoretical investigations and experimental demonstrations,significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials.In this review,we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties.On this basis,we studied the effect of material parameters on thermoelectric properties.Then,we analyzed the features of Bi2Te3-based thermoelectric materials,including the lattice defects,anisotropic behavior and the strong bipolar conduction at relatively high temperature.Then we accordingly summarized the strategies for enhancing the thermoelectric performance,including point defect engineering,texture alignment,and band gap enlargement.Moreover,we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method,ball milling,and melt spinning.Lastly,we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3,which will enlighten the enhancement of thermoelectric performance in broader materials展开更多
The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzman...The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory,and further evaluated as a function of chemical potential assuming a rigid band picture.The results suggest that p-type doping in the Bi_2Te_3 compound may be more favorable than n-type doping.From this analysis results,doping effects on a material will exhibit high ZT.Furthermore,we can also find the right doping concentration to produce more efficient materials,and present the "advantage filling element map" in detail.展开更多
In order to investigate the adaptability of thermoelectric materials system with different barriers to functional graded thermoelectric materials, n-type Bi2Te, and PbTe two segments graded thermoelectric materials (G...In order to investigate the adaptability of thermoelectric materials system with different barriers to functional graded thermoelectric materials, n-type Bi2Te, and PbTe two segments graded thermoelectric materials (GTM) with different barriers were fabricated by conventional hot pressing method. Metals Cu, Al, Fe, Co and Ni were used as barriers between two segments. The effects of different barriers on thermoelectric properties of GTM were investigated. The phase and crystal structures were determined by x-ray diffraction analysis (XRD). The distributions of different compositions were analyzed by electron microprobe analysis (EMA). The thermoelectric properties were measured at 303 K along the direction parallel to the pressing direction. The electric conductivity of samples was measured at 303 K by the four-probe technique. To measure the Seebeck coefficient, heat was applied to the samples, which were placed between two Cu discs. The thermoelectric electromotive force (E) was measured upon applying small temperature differences (DeltaT<275 K) between the both ends of the samples. The Seebeck coefficient of the samples was determined from the E/&UDelta;T.展开更多
Bulk n-type Bi2Te3 single crystals with optimized chemical composition were successfully prepared by a high temperature-gradient directional solidification method. We investigate the influence of alloy microstructure,...Bulk n-type Bi2Te3 single crystals with optimized chemical composition were successfully prepared by a high temperature-gradient directional solidification method. We investigate the influence of alloy microstructure, chemical composition, and growth orientation on the thermoelectric transport properties. The results show that the composition of single-crystal Bi2Te3 alloy, along the c axis direction, could be slightly tuned by changing the growth rate of the crystal. At a rate of 18 mm/h, the formed Bi2Te3 crystal exhibits good thermoelectric properties. At 300 K, a maximum Seebeck coefficient of -245 μV/K and an electrical conductivity of 5.6 × 10 4 S/m are acquired. The optimal power factor is ob- tained as 3.3 × 10 -3 W/K2m, with a figure of merit of 0.74. It can be attributed to the increased tellurium allocation in the Bi2Te3 alloys, as verified well by the density functional theory caLculations.展开更多
Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices of different thicknesses are prepared on the silicon dioxide substrates by magnetron sputtering technique and thermally annealed at 573 K for 30 min. Thermoelectric...Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices of different thicknesses are prepared on the silicon dioxide substrates by magnetron sputtering technique and thermally annealed at 573 K for 30 min. Thermoelectric(TE)measurements indicate that optimal thickness and thickness ratio improve the TE performance of Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices, respectively. High TE performances with figure-of-merit(ZT) values as high as 1.32 and 1.56 are achieved at 443 K for 30 nm and 50 nm Bi_2Te_3 thin films, respectively. These ZT values are higher than those of p-type Bi_2Te_3 alloys as reported. Relatively high ZT of the GeTe/B_2Te_3 superlattices at 300-380 K were 0.62-0.76. The achieved high ZT value may be attributed to the unique nano-and microstructures of the films,which increase phonon scattering and reduce thermal conductivity. The results indicate that Bi_2Te_3-based thin films can serve as high-performance materials for applications in TE devices.展开更多
We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi2Sea at room temperature. The hybridization b...We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi2Sea at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi2Sea-based TITFs as high-performance TE materials and devices.展开更多
We report on the fabrication and characterization of multi-leg bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric devices. The two materials were deposited, on top of SiO2/Si substrates, using P...We report on the fabrication and characterization of multi-leg bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric devices. The two materials were deposited, on top of SiO2/Si substrates, using Pulsed Laser Deposition (PLD). The SiO2 layer was used to provide insulation between the devices and the Si wafer. Copper was used as an electrical connector and a contact for the junctions. Four devices were built, where the Bi2Te3 and Sb2Te3 were deposited at substrate temperatures of 100°C, 200°C, 300°C and 400°C. The results show that the device has a voltage sensitivity of up to 146 μV/K and temperature sensitivity of 6.8 K/mV.展开更多
We have developed a novel thermoelectric gas sensors based on bismuth telluride thin films.These sensors were employed for sensing different concentrations of H_2 gas.Radio frequency (R.F.) magnetron sputtering was em...We have developed a novel thermoelectric gas sensors based on bismuth telluride thin films.These sensors were employed for sensing different concentrations of H_2 gas.Radio frequency (R.F.) magnetron sputtering was employed to deposit the bismuth telluride (Bi_2Te_3) thin films.The morphology of such thin films was investigated and responses of the thermoelectric devices to H_2 were studied.展开更多
We present a variational density-functional perturbation theory (DFPT) to investigate the lattice dynamics and vibra- tional properties of single crystal bismuth telluride material. The phonon dispersion curves and ...We present a variational density-functional perturbation theory (DFPT) to investigate the lattice dynamics and vibra- tional properties of single crystal bismuth telluride material. The phonon dispersion curves and phonon density of states (DOS) of the material were obtained. The phonon dispersions are divided into two fields by a phonon gap. In the lower field, atomic vibrations of both Bi and Te contribute to the DOS. In the higher field, most contributions come from Te atoms. The calculated Born effective charges and dielectric constants reveal a great anisotropy in the crystal. The largest Born effective charge generates a significant dynamic charge transferring along the c axis. By DFPT calculation, the greatest LO-TO splitting takes place in the infrared phonon modes and reaches 1.7 THz in the Brillouin zone center. The Raman spectra and peaks corresponding to respective atomic vibration modes were found to be in good agreement with the experimental data.展开更多
Bi2(Te,Se)3 alloys are conventional commercial thermoelectric materials for solid-state refrigeration around room temperature.In recent years,much attention has been paid to various advanced thermoelectric composite m...Bi2(Te,Se)3 alloys are conventional commercial thermoelectric materials for solid-state refrigeration around room temperature.In recent years,much attention has been paid to various advanced thermoelectric composite materials due to the unique thermoelectric properties.In this work,Bi2Se3/TiO2 composites were prepared by hot pressing the plate-like Bi2Se3 powders coated in situ with hydrolyzed hytetabutyl-n-butyl titanate(TNBT),and therefore numerous TiO2 in micrometer size could be formed on the interface of Bi2Se3 grains.The carrier concentration in Bi2Se3 matrix is optimized subject to the addition of n-type semiconductor TiO2,contributing to a significant improved power factor.In the meantime,the lattice thermal conductivity is also suppressed due to the enhanced phonon scattering at Bi2Se3/TiO2 interface and amorphous TiO2 particles.As a consequence,a peak figure of merit(zT)of 0.41 is obtained at 525 K in Bi2Se3/15 mol%TiO2 composites,nearly 50%augment over the pristine Bi2Se3 binary compound.展开更多
The thermoelectric properties at elevated temperature were investigated for n-type Bi2(Te,Se)3 which is obtained from ball milling processed powder with various milling times. Electrical properties such as electrica...The thermoelectric properties at elevated temperature were investigated for n-type Bi2(Te,Se)3 which is obtained from ball milling processed powder with various milling times. Electrical properties such as electrical resistivity and Seebeck coefficient are clearly dependent on milling time, in which the carrier concentration is attributed to the change of the electrical properties. The concentrations of the defects are also varied with the ball milling time, which is the origin of the carrier concentration variation. Even though finer grain sizes are obtained after the long ball milling time, the temperature dependence of the thermal conductivity is not solely understood with the grain size, whereas the electrical contribution to the thermal conductivity should be also considered. The highest figure of merit value of ZT = 0.83 is achieved at 373 K for the optimized samples, in which ball milling time is 10 h. The obtained ZT value is 48% improvement over that of the 0.5-h sample at 373 K.展开更多
Two-dimensional(2D) materials with potential applications in photonic and optoelectronic devices have attracted increasing attention due to their unique structures and captivating properties. However, generation of st...Two-dimensional(2D) materials with potential applications in photonic and optoelectronic devices have attracted increasing attention due to their unique structures and captivating properties. However, generation of stable high-energy ultrashort pulses requires further boosting of these materials' optical properties, such as higher damage threshold and larger modulation depth. Here we investigate a new type of heterostructure material with uniformity by employing the magnetron sputtering technique. Heterostructure materials are synthesized with van der Waals heterostructures consisting of MoS_2 and Sb_2Te_3. The bandgap, carrier mobility, and carrier concentration of the MoS_2-Sb_2Te_3-MoS_2 heterostructure materials are calculated theoretically. By using these materials as saturable absorbers(SAs), applications in fiber lasers with Q-switching and mode-locking states are demonstrated experimentally. The modulation depth and damage threshold of SAs are measured to be 64.17%and 14.13 J∕cm^2, respectively. Both theoretical and experimental results indicate that MoS_2-Sb_2Te_3-MoS_2 heterostructure materials have large modulation depth, and can resist high power during the generation of ultrashort pulses. The MoS_2-Sb_2Te_3-MoS_2 heterostructure materials have the advantages of low cost, high reliability, and suitability for mass production, and provide a promising solution for the development of 2D-material-based devices with desirable electronic and optoelectronic properties.展开更多
We report the investigation of the thermoelectric properties of large-scale solution-synthesized Bi2Te3 nanocomposites prepared from nanowires hot- pressed into bulk pellets. A third element, Se, is introduced to tune...We report the investigation of the thermoelectric properties of large-scale solution-synthesized Bi2Te3 nanocomposites prepared from nanowires hot- pressed into bulk pellets. A third element, Se, is introduced to tune the carrier concentration of the nanocomposites. Due to the Se doping, the thermoelectric figure of merit (ZT) of the nanocomposites is significantly enhanced due to the increased power factor and reduced thermal conductivity. We also find that thermal transport in our hot-pressed pellets is anisotropic, which results in different thermal conductivities along the in-plane and cross-plane directions. Theoretical calculations for both electronic and thermal transport are carried out to establish fundamental understanding of the material system and provide directions for further ZT optimization with adjustments to carrier concentration and mobility.展开更多
Bulk samples of quasi-binary compounds in the Sn(Pb)Te-Bi2Te3 system were prepared by solvothermal method followed by a sintering procedure of compacted pellets. The formation mechanism of the precursor powders, micro...Bulk samples of quasi-binary compounds in the Sn(Pb)Te-Bi2Te3 system were prepared by solvothermal method followed by a sintering procedure of compacted pellets. The formation mechanism of the precursor powders, microstructure and thermoelectric properties of the final bulk samples were studied.展开更多
Cu@Ag/Bi2Te3 nanocomposites were prepared for the first time by ultrasonic dispersion-rapid freezedrying method combined with spark plasma sintering(SPS).By changing the content of Cu@Ag nanoparticle,we could modulate...Cu@Ag/Bi2Te3 nanocomposites were prepared for the first time by ultrasonic dispersion-rapid freezedrying method combined with spark plasma sintering(SPS).By changing the content of Cu@Ag nanoparticle,we could modulate the temperature dependent thermoelectric properties.The highest ZT value can be obtained at 450 K for 1 vol%Cu@Ag/Bi2Te3,which is benefited from the decoupling of electrical and thermal properties.With the increase of electrical conductivity,the absolute value of Seebeck coefficient lifts while the thermal conductivity declines.Meanwhile,the average ZT value between 300 K and 475 K was 0.61 for 1 vol%Cu@Ag/Bi2Te3,which is much higher than that of pristine Bi2 Te3.Therefore,the decoupling effect of Cu@Ag nanoparticles incorporation could be a promising method to broaden the application of Bi2Te3 based thermoelectric materials.展开更多
This study presents a comprehensive optimization and comparative analysis of thermoelectric(TE)infrared(IR)detec-tors using Bi_(2)Te_(3) and Si materials.Through theoretical modeling and numerical simulations,we explo...This study presents a comprehensive optimization and comparative analysis of thermoelectric(TE)infrared(IR)detec-tors using Bi_(2)Te_(3) and Si materials.Through theoretical modeling and numerical simulations,we explored the impact of TE mate-rial properties,device structure,and operating conditions on responsivity,detectivity,noise equivalent temperature difference(NETD),and noise equivalent power(NEP).Our study offers an optimally designed IR detector with responsivity and detectivity approaching 2×10^(5) V/W and 6×10^(9) cm∙Hz^(1/2)/W,respectively.This enhancement is attributed to unique design features,includ-ing raised thermal collectors and long suspended thin thermoelectric wire sensing elements embedded in low thermal conductivity organic materials like parylene.Moreover,we demonstrate the compatibility of Bi_(2)Te_(3)-based detector fabrication pro-cesses with existing MEMS foundry processes,facilitating scalability and manufacturability.Importantly,for TE IR detectors,zT/κemerges as a critical parameter contrary to conventional TE material selection based solely on zT(where zT is the thermoelec-tric figure of merit andκis the thermal conductivity).展开更多
Si-based thermoelectric(TE)materials are exhibiting remarkable perspectives in self-energized applications with their special advantages.However,the relatively high total thermal conductivity(κ)prevents their TE enha...Si-based thermoelectric(TE)materials are exhibiting remarkable perspectives in self-energized applications with their special advantages.However,the relatively high total thermal conductivity(κ)prevents their TE enhancement.Here,a strategy of co-compositing dual oxides was implemented for enhancing the TE properties of p-type Si_(80)Ge_(20) bulks.Composited Ga2O_(3) was demonstrated to enhance the power factor(PF)due to the crystallization-induced effect of produced Ga by decomposition on SiGe matrix.Associating with compositing SiO_(2) aerogel(a-SiO_(2))powder,not only introduced the fine amorphous inclusions and decreased the grain size of host matrix,but also various nano morphologies were formed,i.e.,nano inclusions,precipitations,twin boundaries(TBs),and faults.Combining with the eutectic Ge,hierarchical scattering centers impeded the phonon transport comprehensively(decreasing the phonon group velocity(a v)and relaxation time)for reducing the lattice-induced thermal conductivity(lκ).As a result,a minimumκof 2.38 W·m^(−1)·K^(−1) was achieved,which is significantly dropped by 32.6%in contrast with that of the pristine counterpart.Ultimately,a maximal dimensionless figure of merit(ZT)of 0.9 was achieved at 600℃,which is better than those of most corresponding oxide-composited Si-based bulks.展开更多
High-throughput(HTP)experiments play key roles in accelerating the discovery of advanced materials,but the HTP preparation and characterization,especially for bulk samples,are extremely difficult.In this work,we devel...High-throughput(HTP)experiments play key roles in accelerating the discovery of advanced materials,but the HTP preparation and characterization,especially for bulk samples,are extremely difficult.In this work,we developed a novel and general strategy for HTP screening of high-performance bulk thermoelectric materials.The performed fullchain HTP experiments cover rapid synthesis of the bulk sample with quasi-continuous composition,microarea phase identification and structure analysis,and measurement of the spatial distribution of the sample composition,electrical and thermal transport properties.According to our experiments,bulk Bi_(2-x)Sb_(x)Te_(3)(x=1-2)and Bi_(2)Te_(3-x)Se_(x)(x=0-1.5)samples with quasi-continuous compositions have been rapidly fabricated by this HTP method.The target thermoelectric materials with the best Sb/Bi and Te/Se ratios are successfully screened out based on subsequent HTP characterization results,demonstrating that this HTP technique is effective in speeding up the exploration of novel high-performance thermoelectric materials.展开更多
To optimize the performance of a thermoelectric device for a specific application, the device should be uniquely designed for the application. Achieving an optimum design requires accurate measurements and credible an...To optimize the performance of a thermoelectric device for a specific application, the device should be uniquely designed for the application. Achieving an optimum design requires accurate measurements and credible analysis to evaluate the performance of the device and its relationship with the device parameters. To do that, we designed, fabricated, and tested four devices based on Bi2Te3 and Sb2Te3. To evaluate the accuracy of our analysis, experimental measurements were compared with the numerical simulation performed using COMSOLTM. The two sets of results were found to be in full agreement. This is a proof of the accuracy of our experimental measurements and the credibility of our simulation. The study shows that testing or simulating the devices without heat sink will lead to skewed results. This is because the junction will not hold its temperatures value, but will, instead, automatically change its value to the direction of thermal equilibrium. The study shows also that there is no reciprocity between the input and the output characteristics of the devices. Therefore, a device optimized for cooling and heating may not be automatically optimized for energy harvesting. For heating and cooling, temperature sensitivity should be optimized;while for energy harvesting, voltage sensitivity should be optimized. Using heat sink, our devices achieved a voltage sensitivity of 187.77 μV/K and a temperature sensitivity of 6.12 K/mV.展开更多
基金Project supported by the Australian Research CouncilZhi-Gang Chen thanks the USQ start-up grantstrategic research grant
文摘Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels.Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature.Due to the intensive theoretical investigations and experimental demonstrations,significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials.In this review,we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties.On this basis,we studied the effect of material parameters on thermoelectric properties.Then,we analyzed the features of Bi2Te3-based thermoelectric materials,including the lattice defects,anisotropic behavior and the strong bipolar conduction at relatively high temperature.Then we accordingly summarized the strategies for enhancing the thermoelectric performance,including point defect engineering,texture alignment,and band gap enlargement.Moreover,we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method,ball milling,and melt spinning.Lastly,we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3,which will enlighten the enhancement of thermoelectric performance in broader materials
基金Funded by National Natural Science Foundation of China(Nos.81371973 and 11304090)Wuhan Municipal Health and Family Planning Commission Foundation of China(No.WX15C10)
文摘The electronic structures of bulk Bi_2Te_3 crystals were investigated by the first-principles calculations.The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory,and further evaluated as a function of chemical potential assuming a rigid band picture.The results suggest that p-type doping in the Bi_2Te_3 compound may be more favorable than n-type doping.From this analysis results,doping effects on a material will exhibit high ZT.Furthermore,we can also find the right doping concentration to produce more efficient materials,and present the "advantage filling element map" in detail.
基金This work was financially supported by the Nationol Natural Science Foundation of China (No. 59772012)
文摘In order to investigate the adaptability of thermoelectric materials system with different barriers to functional graded thermoelectric materials, n-type Bi2Te, and PbTe two segments graded thermoelectric materials (GTM) with different barriers were fabricated by conventional hot pressing method. Metals Cu, Al, Fe, Co and Ni were used as barriers between two segments. The effects of different barriers on thermoelectric properties of GTM were investigated. The phase and crystal structures were determined by x-ray diffraction analysis (XRD). The distributions of different compositions were analyzed by electron microprobe analysis (EMA). The thermoelectric properties were measured at 303 K along the direction parallel to the pressing direction. The electric conductivity of samples was measured at 303 K by the four-probe technique. To measure the Seebeck coefficient, heat was applied to the samples, which were placed between two Cu discs. The thermoelectric electromotive force (E) was measured upon applying small temperature differences (DeltaT<275 K) between the both ends of the samples. The Seebeck coefficient of the samples was determined from the E/&UDelta;T.
基金supported by the National Natural Science Foundation of China(Grant No.51074127)the Research Fund of the State Key Laboratory of Solidification Processing of Northwestern Polytechnical University,China(Grant No.SKLSP201010)
文摘Bulk n-type Bi2Te3 single crystals with optimized chemical composition were successfully prepared by a high temperature-gradient directional solidification method. We investigate the influence of alloy microstructure, chemical composition, and growth orientation on the thermoelectric transport properties. The results show that the composition of single-crystal Bi2Te3 alloy, along the c axis direction, could be slightly tuned by changing the growth rate of the crystal. At a rate of 18 mm/h, the formed Bi2Te3 crystal exhibits good thermoelectric properties. At 300 K, a maximum Seebeck coefficient of -245 μV/K and an electrical conductivity of 5.6 × 10 4 S/m are acquired. The optimal power factor is ob- tained as 3.3 × 10 -3 W/K2m, with a figure of merit of 0.74. It can be attributed to the increased tellurium allocation in the Bi2Te3 alloys, as verified well by the density functional theory caLculations.
文摘Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices of different thicknesses are prepared on the silicon dioxide substrates by magnetron sputtering technique and thermally annealed at 573 K for 30 min. Thermoelectric(TE)measurements indicate that optimal thickness and thickness ratio improve the TE performance of Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices, respectively. High TE performances with figure-of-merit(ZT) values as high as 1.32 and 1.56 are achieved at 443 K for 30 nm and 50 nm Bi_2Te_3 thin films, respectively. These ZT values are higher than those of p-type Bi_2Te_3 alloys as reported. Relatively high ZT of the GeTe/B_2Te_3 superlattices at 300-380 K were 0.62-0.76. The achieved high ZT value may be attributed to the unique nano-and microstructures of the films,which increase phonon scattering and reduce thermal conductivity. The results indicate that Bi_2Te_3-based thin films can serve as high-performance materials for applications in TE devices.
基金Supported by the National Natural Science Foundation of China under Grant No 11304316the Ministry of Science and Technology of China under Grant No 2011YQ130018the Department of Science and Technology of Yunnan Province,and the Chinese Academy of Sciences
文摘We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi2Sea at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi2Sea-based TITFs as high-performance TE materials and devices.
文摘We report on the fabrication and characterization of multi-leg bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric devices. The two materials were deposited, on top of SiO2/Si substrates, using Pulsed Laser Deposition (PLD). The SiO2 layer was used to provide insulation between the devices and the Si wafer. Copper was used as an electrical connector and a contact for the junctions. Four devices were built, where the Bi2Te3 and Sb2Te3 were deposited at substrate temperatures of 100°C, 200°C, 300°C and 400°C. The results show that the device has a voltage sensitivity of up to 146 μV/K and temperature sensitivity of 6.8 K/mV.
文摘We have developed a novel thermoelectric gas sensors based on bismuth telluride thin films.These sensors were employed for sensing different concentrations of H_2 gas.Radio frequency (R.F.) magnetron sputtering was employed to deposit the bismuth telluride (Bi_2Te_3) thin films.The morphology of such thin films was investigated and responses of the thermoelectric devices to H_2 were studied.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50971101 and 51074127)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)of China(Grant No.SKLSP201010)
文摘We present a variational density-functional perturbation theory (DFPT) to investigate the lattice dynamics and vibra- tional properties of single crystal bismuth telluride material. The phonon dispersion curves and phonon density of states (DOS) of the material were obtained. The phonon dispersions are divided into two fields by a phonon gap. In the lower field, atomic vibrations of both Bi and Te contribute to the DOS. In the higher field, most contributions come from Te atoms. The calculated Born effective charges and dielectric constants reveal a great anisotropy in the crystal. The largest Born effective charge generates a significant dynamic charge transferring along the c axis. By DFPT calculation, the greatest LO-TO splitting takes place in the infrared phonon modes and reaches 1.7 THz in the Brillouin zone center. The Raman spectra and peaks corresponding to respective atomic vibration modes were found to be in good agreement with the experimental data.
基金financially supported by the National Natural Science Foundation of China(Nos.51871199 and 61534001)。
文摘Bi2(Te,Se)3 alloys are conventional commercial thermoelectric materials for solid-state refrigeration around room temperature.In recent years,much attention has been paid to various advanced thermoelectric composite materials due to the unique thermoelectric properties.In this work,Bi2Se3/TiO2 composites were prepared by hot pressing the plate-like Bi2Se3 powders coated in situ with hydrolyzed hytetabutyl-n-butyl titanate(TNBT),and therefore numerous TiO2 in micrometer size could be formed on the interface of Bi2Se3 grains.The carrier concentration in Bi2Se3 matrix is optimized subject to the addition of n-type semiconductor TiO2,contributing to a significant improved power factor.In the meantime,the lattice thermal conductivity is also suppressed due to the enhanced phonon scattering at Bi2Se3/TiO2 interface and amorphous TiO2 particles.As a consequence,a peak figure of merit(zT)of 0.41 is obtained at 525 K in Bi2Se3/15 mol%TiO2 composites,nearly 50%augment over the pristine Bi2Se3 binary compound.
基金supported by the research fund of Hanbat National University in 2015
文摘The thermoelectric properties at elevated temperature were investigated for n-type Bi2(Te,Se)3 which is obtained from ball milling processed powder with various milling times. Electrical properties such as electrical resistivity and Seebeck coefficient are clearly dependent on milling time, in which the carrier concentration is attributed to the change of the electrical properties. The concentrations of the defects are also varied with the ball milling time, which is the origin of the carrier concentration variation. Even though finer grain sizes are obtained after the long ball milling time, the temperature dependence of the thermal conductivity is not solely understood with the grain size, whereas the electrical contribution to the thermal conductivity should be also considered. The highest figure of merit value of ZT = 0.83 is achieved at 373 K for the optimized samples, in which ball milling time is 10 h. The obtained ZT value is 48% improvement over that of the 0.5-h sample at 373 K.
基金National Natural Science Foundation of China(NSFC)(11674036)Beijing University of Posts and Telecommunications(BUPT)(IPOC2016ZT04,IPOC2017ZZ05)+2 种基金Beijing Youth Top-Notch Talent Support Program(2017000026833ZK08)Special Program for Applied Research on Super Computation of the NSFC Guangdong Joint Fund(U1501501)XAFS Station(BL14W1)
文摘Two-dimensional(2D) materials with potential applications in photonic and optoelectronic devices have attracted increasing attention due to their unique structures and captivating properties. However, generation of stable high-energy ultrashort pulses requires further boosting of these materials' optical properties, such as higher damage threshold and larger modulation depth. Here we investigate a new type of heterostructure material with uniformity by employing the magnetron sputtering technique. Heterostructure materials are synthesized with van der Waals heterostructures consisting of MoS_2 and Sb_2Te_3. The bandgap, carrier mobility, and carrier concentration of the MoS_2-Sb_2Te_3-MoS_2 heterostructure materials are calculated theoretically. By using these materials as saturable absorbers(SAs), applications in fiber lasers with Q-switching and mode-locking states are demonstrated experimentally. The modulation depth and damage threshold of SAs are measured to be 64.17%and 14.13 J∕cm^2, respectively. Both theoretical and experimental results indicate that MoS_2-Sb_2Te_3-MoS_2 heterostructure materials have large modulation depth, and can resist high power during the generation of ultrashort pulses. The MoS_2-Sb_2Te_3-MoS_2 heterostructure materials have the advantages of low cost, high reliability, and suitability for mass production, and provide a promising solution for the development of 2D-material-based devices with desirable electronic and optoelectronic properties.
基金H. Y. F. thanks Scott Finefrock and Tianyue Gao for the help in Hall measurement. H. Y. F. and Y. W. acknowledge the use of the hot press setup in Prof. Chin-The Sun's lab at Purdue University. H. Y. F. and Y. W. acknowledge Air Force Office of Scientific Research (No. FA9550-12-1-0061). T. L. F. and X. L. R. acknowledge the partial support from National Science Foundation (No. 1150948).
文摘We report the investigation of the thermoelectric properties of large-scale solution-synthesized Bi2Te3 nanocomposites prepared from nanowires hot- pressed into bulk pellets. A third element, Se, is introduced to tune the carrier concentration of the nanocomposites. Due to the Se doping, the thermoelectric figure of merit (ZT) of the nanocomposites is significantly enhanced due to the increased power factor and reduced thermal conductivity. We also find that thermal transport in our hot-pressed pellets is anisotropic, which results in different thermal conductivities along the in-plane and cross-plane directions. Theoretical calculations for both electronic and thermal transport are carried out to establish fundamental understanding of the material system and provide directions for further ZT optimization with adjustments to carrier concentration and mobility.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.50072010 and 59825102).
文摘Bulk samples of quasi-binary compounds in the Sn(Pb)Te-Bi2Te3 system were prepared by solvothermal method followed by a sintering procedure of compacted pellets. The formation mechanism of the precursor powders, microstructure and thermoelectric properties of the final bulk samples were studied.
基金funded by the National Natural Science Foundation of China(Nos.51774096,51871053)Shanghai Committee of Science and Technology(Nos.16JC1401800,18JC1411200)+1 种基金the Fundamental Research Funds for the Central Universities(No.19D110625)Program of Innovative Research Team in University of Ministry of Education of China(No.IRT16R13)。
文摘Cu@Ag/Bi2Te3 nanocomposites were prepared for the first time by ultrasonic dispersion-rapid freezedrying method combined with spark plasma sintering(SPS).By changing the content of Cu@Ag nanoparticle,we could modulate the temperature dependent thermoelectric properties.The highest ZT value can be obtained at 450 K for 1 vol%Cu@Ag/Bi2Te3,which is benefited from the decoupling of electrical and thermal properties.With the increase of electrical conductivity,the absolute value of Seebeck coefficient lifts while the thermal conductivity declines.Meanwhile,the average ZT value between 300 K and 475 K was 0.61 for 1 vol%Cu@Ag/Bi2Te3,which is much higher than that of pristine Bi2 Te3.Therefore,the decoupling effect of Cu@Ag nanoparticles incorporation could be a promising method to broaden the application of Bi2Te3 based thermoelectric materials.
基金supported by the National Science Foundation (NSF)under grant number CBET-2110603.
文摘This study presents a comprehensive optimization and comparative analysis of thermoelectric(TE)infrared(IR)detec-tors using Bi_(2)Te_(3) and Si materials.Through theoretical modeling and numerical simulations,we explored the impact of TE mate-rial properties,device structure,and operating conditions on responsivity,detectivity,noise equivalent temperature difference(NETD),and noise equivalent power(NEP).Our study offers an optimally designed IR detector with responsivity and detectivity approaching 2×10^(5) V/W and 6×10^(9) cm∙Hz^(1/2)/W,respectively.This enhancement is attributed to unique design features,includ-ing raised thermal collectors and long suspended thin thermoelectric wire sensing elements embedded in low thermal conductivity organic materials like parylene.Moreover,we demonstrate the compatibility of Bi_(2)Te_(3)-based detector fabrication pro-cesses with existing MEMS foundry processes,facilitating scalability and manufacturability.Importantly,for TE IR detectors,zT/κemerges as a critical parameter contrary to conventional TE material selection based solely on zT(where zT is the thermoelec-tric figure of merit andκis the thermal conductivity).
基金funded by the National Natural Science Foundation of China (Grant Nos.U21A2054,52061009,52273285,and 52262032)Guangxi Natural Science Foundation of China (Grant No.2020GXNSFAA159111)+1 种基金Guangxi Science and Technology Project (Grant Nos.2021AC19206 and AD20159006)the National Key R&D Program of China (Grant No.2017YFE0198000).
文摘Si-based thermoelectric(TE)materials are exhibiting remarkable perspectives in self-energized applications with their special advantages.However,the relatively high total thermal conductivity(κ)prevents their TE enhancement.Here,a strategy of co-compositing dual oxides was implemented for enhancing the TE properties of p-type Si_(80)Ge_(20) bulks.Composited Ga2O_(3) was demonstrated to enhance the power factor(PF)due to the crystallization-induced effect of produced Ga by decomposition on SiGe matrix.Associating with compositing SiO_(2) aerogel(a-SiO_(2))powder,not only introduced the fine amorphous inclusions and decreased the grain size of host matrix,but also various nano morphologies were formed,i.e.,nano inclusions,precipitations,twin boundaries(TBs),and faults.Combining with the eutectic Ge,hierarchical scattering centers impeded the phonon transport comprehensively(decreasing the phonon group velocity(a v)and relaxation time)for reducing the lattice-induced thermal conductivity(lκ).As a result,a minimumκof 2.38 W·m^(−1)·K^(−1) was achieved,which is significantly dropped by 32.6%in contrast with that of the pristine counterpart.Ultimately,a maximal dimensionless figure of merit(ZT)of 0.9 was achieved at 600℃,which is better than those of most corresponding oxide-composited Si-based bulks.
基金supported by the National Key Research and Development Program of China(2018YFB0703600 and 2018YFA0702100)the National Natural Science Foundation of China(51772186,51632005 and 51371194)。
文摘High-throughput(HTP)experiments play key roles in accelerating the discovery of advanced materials,but the HTP preparation and characterization,especially for bulk samples,are extremely difficult.In this work,we developed a novel and general strategy for HTP screening of high-performance bulk thermoelectric materials.The performed fullchain HTP experiments cover rapid synthesis of the bulk sample with quasi-continuous composition,microarea phase identification and structure analysis,and measurement of the spatial distribution of the sample composition,electrical and thermal transport properties.According to our experiments,bulk Bi_(2-x)Sb_(x)Te_(3)(x=1-2)and Bi_(2)Te_(3-x)Se_(x)(x=0-1.5)samples with quasi-continuous compositions have been rapidly fabricated by this HTP method.The target thermoelectric materials with the best Sb/Bi and Te/Se ratios are successfully screened out based on subsequent HTP characterization results,demonstrating that this HTP technique is effective in speeding up the exploration of novel high-performance thermoelectric materials.
文摘To optimize the performance of a thermoelectric device for a specific application, the device should be uniquely designed for the application. Achieving an optimum design requires accurate measurements and credible analysis to evaluate the performance of the device and its relationship with the device parameters. To do that, we designed, fabricated, and tested four devices based on Bi2Te3 and Sb2Te3. To evaluate the accuracy of our analysis, experimental measurements were compared with the numerical simulation performed using COMSOLTM. The two sets of results were found to be in full agreement. This is a proof of the accuracy of our experimental measurements and the credibility of our simulation. The study shows that testing or simulating the devices without heat sink will lead to skewed results. This is because the junction will not hold its temperatures value, but will, instead, automatically change its value to the direction of thermal equilibrium. The study shows also that there is no reciprocity between the input and the output characteristics of the devices. Therefore, a device optimized for cooling and heating may not be automatically optimized for energy harvesting. For heating and cooling, temperature sensitivity should be optimized;while for energy harvesting, voltage sensitivity should be optimized. Using heat sink, our devices achieved a voltage sensitivity of 187.77 μV/K and a temperature sensitivity of 6.12 K/mV.