Owing to their exceptional piezoelectric effects,piezoelectric materials play a crucial role in high-end technologies and contribute significantly to the national economy.Bismuth layer-structured ferroelectrics(BLSFs)...Owing to their exceptional piezoelectric effects,piezoelectric materials play a crucial role in high-end technologies and contribute significantly to the national economy.Bismuth layer-structured ferroelectrics(BLSFs)possess high Curie temperatures,making them a focal point of research in high-temperature piezoelectric sensor devices.However,their poor piezoelectric performance and low direct-current(DC)electrical resistivity hinder their effective deployment in high-temperature applications.To overcome these shortcomings,we employed composition optimization by partially substituting bismuth ions with rare-earth praseodymium ions.This approach enhances the piezoelectric performance and improves the DC electrical resistivity by preventing the loss of volatile bismuth ions and stabilizing the bismuth oxide layer(Bi_(2)O_(2))2+,thereby reducing the concentration of oxygen vacancies.Consequently,we achieved a large piezoelectric constant d33 of 23.5 pC/N in praseodymium-substituted Bi5Ti3FeO15,which is three times higher than that of pure Bi5Ti3FeO15(7.1 pC/N),along with a high Curie temperature TC of 778℃.Additionally,the optimal composition of 4 mol%praseodymium-substituted Bi5Ti3FeO15 exhibits good thermal stability of electromechanical coupling characteristics up to 300℃.This study holds promise for a wide array of high-temperature piezoelectric applications and has the potential to accelerate the development of hightemperature piezoelectric sensor technologies.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52372115)the Opening Project of Key Laboratory of Inorganic Functional Materials and Devices,Chinese Academy of Sciences(Grant No.KLIFMD202309)Fundamental Research Funds for Central Universities.Dr.Q.W.also acknowledges financial support from the State Key Laboratory of Crystal Materials,Shandong University(Grant No.KF2308).
文摘Owing to their exceptional piezoelectric effects,piezoelectric materials play a crucial role in high-end technologies and contribute significantly to the national economy.Bismuth layer-structured ferroelectrics(BLSFs)possess high Curie temperatures,making them a focal point of research in high-temperature piezoelectric sensor devices.However,their poor piezoelectric performance and low direct-current(DC)electrical resistivity hinder their effective deployment in high-temperature applications.To overcome these shortcomings,we employed composition optimization by partially substituting bismuth ions with rare-earth praseodymium ions.This approach enhances the piezoelectric performance and improves the DC electrical resistivity by preventing the loss of volatile bismuth ions and stabilizing the bismuth oxide layer(Bi_(2)O_(2))2+,thereby reducing the concentration of oxygen vacancies.Consequently,we achieved a large piezoelectric constant d33 of 23.5 pC/N in praseodymium-substituted Bi5Ti3FeO15,which is three times higher than that of pure Bi5Ti3FeO15(7.1 pC/N),along with a high Curie temperature TC of 778℃.Additionally,the optimal composition of 4 mol%praseodymium-substituted Bi5Ti3FeO15 exhibits good thermal stability of electromechanical coupling characteristics up to 300℃.This study holds promise for a wide array of high-temperature piezoelectric applications and has the potential to accelerate the development of hightemperature piezoelectric sensor technologies.