采用传统固相烧结法制备了0.7BiFeO_3-0.3BaTiO_3-xBi_2O_3(0≤x≤0.05)无铅压电陶瓷,研究了Bi补偿量x和冷却方式对其相结构、微观形貌和综合电学性能的影响。结果表明:所有样品均为菱方相(R)和伪立方相(PC)两相共存,0≤x≤0.01样品为...采用传统固相烧结法制备了0.7BiFeO_3-0.3BaTiO_3-xBi_2O_3(0≤x≤0.05)无铅压电陶瓷,研究了Bi补偿量x和冷却方式对其相结构、微观形貌和综合电学性能的影响。结果表明:所有样品均为菱方相(R)和伪立方相(PC)两相共存,0≤x≤0.01样品为纯的钙钛矿结构,且x=0.01样品的两相比例C_R/C_(PC)接近1;x>0.01样品中出现富Bi杂相Bi_(25)FeO_(40)。与冷却方式相比,优化Bi补偿量更有利于提升BFBT-xBi_2O_3陶瓷的压电性能。随着x增大,d33先增大后减小,在x=0.01时获得最优值。由于较小的晶粒、较合适的C_R/C_(PC)以及较大的残余应变,水冷BFBT-0.01Bi_2O_3陶瓷获得了最优的压电性能(d_(33水冷)=141 p C/N、k_p=27%)和高T_C=507℃。研究结果表明,BFBT基陶瓷有希望成为兼具高压电性能和高T_C的无铅压电材料体系之一。展开更多
BiFeO3-PbTiO3 (BFO-PT) thin films were prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD) technique under different oxygen pressures. The structures of the films were characterized by means of XRD...BiFeO3-PbTiO3 (BFO-PT) thin films were prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD) technique under different oxygen pressures. The structures of the films were characterized by means of XRD. The current densities were performed to check the conductivity of the films. The dielectric constant and loss factor (tanδ) of the films were measured. The results show that the BFO-PT layers are mainly perovskite structured; the film deposited under 6.665 Pa exhibits low leakage current, low dielectric loss (0.017-0.041) and saturated hysteresis loop with polarization (Pr) value and coercive field (Ec) of 3 μC/cm2 and 109 kV/cm.展开更多
文摘采用传统固相烧结法制备了0.7BiFeO_3-0.3BaTiO_3-xBi_2O_3(0≤x≤0.05)无铅压电陶瓷,研究了Bi补偿量x和冷却方式对其相结构、微观形貌和综合电学性能的影响。结果表明:所有样品均为菱方相(R)和伪立方相(PC)两相共存,0≤x≤0.01样品为纯的钙钛矿结构,且x=0.01样品的两相比例C_R/C_(PC)接近1;x>0.01样品中出现富Bi杂相Bi_(25)FeO_(40)。与冷却方式相比,优化Bi补偿量更有利于提升BFBT-xBi_2O_3陶瓷的压电性能。随着x增大,d33先增大后减小,在x=0.01时获得最优值。由于较小的晶粒、较合适的C_R/C_(PC)以及较大的残余应变,水冷BFBT-0.01Bi_2O_3陶瓷获得了最优的压电性能(d_(33水冷)=141 p C/N、k_p=27%)和高T_C=507℃。研究结果表明,BFBT基陶瓷有希望成为兼具高压电性能和高T_C的无铅压电材料体系之一。
基金Project(04A1B18) supported by Shanghai Municipal Education Commission Project(50472098) supported by the National Natural Science Foundation of China Project(04qmx1440) supported by Shanghai Rising Star Program, China
文摘BiFeO3-PbTiO3 (BFO-PT) thin films were prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD) technique under different oxygen pressures. The structures of the films were characterized by means of XRD. The current densities were performed to check the conductivity of the films. The dielectric constant and loss factor (tanδ) of the films were measured. The results show that the BFO-PT layers are mainly perovskite structured; the film deposited under 6.665 Pa exhibits low leakage current, low dielectric loss (0.017-0.041) and saturated hysteresis loop with polarization (Pr) value and coercive field (Ec) of 3 μC/cm2 and 109 kV/cm.