期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的病历质量控制系统设计
1
作者
罗明
《计算机测量与控制》
2023年第11期235-241,共7页
医疗领域患者的主诉信息是医疗文本分类工作的关键,能为智慧医疗和信息文本归类提供有力的支持;近几年来随着深度学习的发展应用,基于传统深度学习技术的全流程病历质量控制模型层出不穷,但传统模型存在很多缺点和局限性,诸如训练速度...
医疗领域患者的主诉信息是医疗文本分类工作的关键,能为智慧医疗和信息文本归类提供有力的支持;近几年来随着深度学习的发展应用,基于传统深度学习技术的全流程病历质量控制模型层出不穷,但传统模型存在很多缺点和局限性,诸如训练速度慢、精度损失、过拟合和无法处理大规模数据的问题,因此,引入改进的深度学习算法;指南指导下基于深度学习的全流程病历质量控制系统实验结果为:将词向量设置成160时双向循环神经网络模型效果最优,准确率为84.9%;BiGRU-SA MODEL,精准度受向量维度的影响并不大;而改进的文本分类式前馈神经网络模型,精准度在其进行第3次和第4次迭代更新时,发生指数级增长,并在第3次迭代时,精度达到理想值,为83%;随着迭代次数的增加,模型准确率呈现先增大后减小的趋势,在进行第6次迭代时模型效果最优,准确率为84.9%;优化后的全流程病历质量控制模型在变动率指标下的面积的值、准确率、F_(1)、召回率四项指标值都有了一定的提升,以上结果能更好地解决过拟合和特征信息丢失的问题,并且实现全流程病历质量的控制。
展开更多
关键词
bigru-sa
全流程病历
TextCNN
医疗诊断设备
质量
下载PDF
职称材料
基于MSCNNSA-BiGRU的变工况风电机组滚动轴承故障诊断研究
被引量:
12
2
作者
安文杰
陈长征
+2 位作者
田淼
金毓林
孙鲜明
《机电工程》
CAS
北大核心
2022年第8期1096-1103,共8页
风电机组滚动轴承运行工况复杂多变,存在故障特征区域尺寸不一致、故障难提取、难辨别的问题,为此,提出了一种基于多尺度卷积神经网络(MSCNN)、自注意力(SA)机制与双向门控循环单元(BiGRU)的变工况条件下风电机组滚动轴承故障诊断方法(M...
风电机组滚动轴承运行工况复杂多变,存在故障特征区域尺寸不一致、故障难提取、难辨别的问题,为此,提出了一种基于多尺度卷积神经网络(MSCNN)、自注意力(SA)机制与双向门控循环单元(BiGRU)的变工况条件下风电机组滚动轴承故障诊断方法(MSCNNSA-BiGRU)。首先,采用MSCNN提取了轴承原始振动信号的多尺度特征信息;然后,BiGRU结构挖掘原始振动信号的历史与未来信息,更全面地提取了其数据时序特征信息,同时引入self-attention来重点关注故障特征,提高了模型的故障诊断精度;最后,将特征信息融合成了一个特征向量,输入到SoftMax层,实现了对故障的分类;并将该方法应用于实际风电机组滚动轴承故障诊断中。研究结果表明:变工况背景下轴承故障识别准确率为92.7%,与经典的MSCNN网络相比,其故障识别的平均准确率提高8.13%;该方法直接从原始振动信号自适应地提取多尺度的时序特征,并将其进行融合,实现了“端到端”的滚动轴承故障诊断,省去了人工特征提取过程,提高了模型的泛化能力和鲁棒性,对实际工程风电机组滚动轴承故障诊断研究应用具有一定价值。
展开更多
关键词
机械运行与维修
多尺度卷积神经网络
自注意力机制
双向门控循环单元
特征向量
故障分类
下载PDF
职称材料
基于ICNN-BiGRU的轴承故障诊断模型
被引量:
3
3
作者
杨慧
张瑞君
陈国良
《机电工程》
CAS
北大核心
2022年第11期1559-1566,共8页
在实际使用过程中,基于深度学习模型的滚动轴承故障诊断方法易受环境噪声的干扰,为此,提出了一种基于改进卷积神经网络双向门控循环单元(ICNN-BiGRU)的滚动轴承故障诊断模型(方法)。首先,使用Laplace小波对采集到的滚动轴承振动信号进...
在实际使用过程中,基于深度学习模型的滚动轴承故障诊断方法易受环境噪声的干扰,为此,提出了一种基于改进卷积神经网络双向门控循环单元(ICNN-BiGRU)的滚动轴承故障诊断模型(方法)。首先,使用Laplace小波对采集到的滚动轴承振动信号进行了相关滤波,得到了功率谱;然后,利用ICNN-BiGRU自动提取了功率谱特征,在卷积神经网络基础上引入了动态选择机制和自注意力机制,根据轴承不同故障状态定位了相关的特征信息,从而实现了轴承故障特征提取和故障诊断;最后,通过西安交通大学昇阳科技(XJTU-SY)联合实验室的滚动轴承加速寿命试验数据集,对ICNN-BiGRU模型与其他深度学习模型进行了对比,以验证ICNN-BiGRU模型的优越性。研究结果表明:相比于其他深度学习模型,ICNN-BiGRU模型的故障诊断精度更高,其诊断准确率可达99.65%;在不同背景噪声的干扰下,相比于其他深度学习模型,ICNN-BiGRU模型的特征学习能力更强,具有一定的工程参考价值。
展开更多
关键词
深度学习模型
特征学习能力
改进卷积神经网络
双向门控循环单元
Laplace小波
动态选择
自注意力
下载PDF
职称材料
题名
基于深度学习的病历质量控制系统设计
1
作者
罗明
机构
广东省梅州市人民医院
出处
《计算机测量与控制》
2023年第11期235-241,共7页
基金
梅州市人民医院科研培育项目(PY-C2022006)。
文摘
医疗领域患者的主诉信息是医疗文本分类工作的关键,能为智慧医疗和信息文本归类提供有力的支持;近几年来随着深度学习的发展应用,基于传统深度学习技术的全流程病历质量控制模型层出不穷,但传统模型存在很多缺点和局限性,诸如训练速度慢、精度损失、过拟合和无法处理大规模数据的问题,因此,引入改进的深度学习算法;指南指导下基于深度学习的全流程病历质量控制系统实验结果为:将词向量设置成160时双向循环神经网络模型效果最优,准确率为84.9%;BiGRU-SA MODEL,精准度受向量维度的影响并不大;而改进的文本分类式前馈神经网络模型,精准度在其进行第3次和第4次迭代更新时,发生指数级增长,并在第3次迭代时,精度达到理想值,为83%;随着迭代次数的增加,模型准确率呈现先增大后减小的趋势,在进行第6次迭代时模型效果最优,准确率为84.9%;优化后的全流程病历质量控制模型在变动率指标下的面积的值、准确率、F_(1)、召回率四项指标值都有了一定的提升,以上结果能更好地解决过拟合和特征信息丢失的问题,并且实现全流程病历质量的控制。
关键词
bigru-sa
全流程病历
TextCNN
医疗诊断设备
质量
Keywords
bigru-sa
full process medical records
TextCNN
medical diagnostic equipment
connotative quality
分类号
TP273 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
基于MSCNNSA-BiGRU的变工况风电机组滚动轴承故障诊断研究
被引量:
12
2
作者
安文杰
陈长征
田淼
金毓林
孙鲜明
机构
沈阳工业大学机械工程学院
宁波坤博测控科技有限公司
出处
《机电工程》
CAS
北大核心
2022年第8期1096-1103,共8页
基金
国家自然科学基金资助项目(51675350,51575361)。
文摘
风电机组滚动轴承运行工况复杂多变,存在故障特征区域尺寸不一致、故障难提取、难辨别的问题,为此,提出了一种基于多尺度卷积神经网络(MSCNN)、自注意力(SA)机制与双向门控循环单元(BiGRU)的变工况条件下风电机组滚动轴承故障诊断方法(MSCNNSA-BiGRU)。首先,采用MSCNN提取了轴承原始振动信号的多尺度特征信息;然后,BiGRU结构挖掘原始振动信号的历史与未来信息,更全面地提取了其数据时序特征信息,同时引入self-attention来重点关注故障特征,提高了模型的故障诊断精度;最后,将特征信息融合成了一个特征向量,输入到SoftMax层,实现了对故障的分类;并将该方法应用于实际风电机组滚动轴承故障诊断中。研究结果表明:变工况背景下轴承故障识别准确率为92.7%,与经典的MSCNN网络相比,其故障识别的平均准确率提高8.13%;该方法直接从原始振动信号自适应地提取多尺度的时序特征,并将其进行融合,实现了“端到端”的滚动轴承故障诊断,省去了人工特征提取过程,提高了模型的泛化能力和鲁棒性,对实际工程风电机组滚动轴承故障诊断研究应用具有一定价值。
关键词
机械运行与维修
多尺度卷积神经网络
自注意力机制
双向门控循环单元
特征向量
故障分类
Keywords
mechanical operation and maintenance
multi-scale convolutional neural network(MSCNN)
self-attention(SA)mechanism
bidirectional gated recurrent unit(BiGRU)
feature vector
fault classification
分类号
TH133.33 [机械工程—机械制造及自动化]
TH17 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
基于ICNN-BiGRU的轴承故障诊断模型
被引量:
3
3
作者
杨慧
张瑞君
陈国良
机构
安徽文达信息工程学院智能制造学院
西安交通大学机械工程学院
联合传动及轴承技术研究中心
出处
《机电工程》
CAS
北大核心
2022年第11期1559-1566,共8页
基金
国家自然科学基金资助项目(51575421)。
文摘
在实际使用过程中,基于深度学习模型的滚动轴承故障诊断方法易受环境噪声的干扰,为此,提出了一种基于改进卷积神经网络双向门控循环单元(ICNN-BiGRU)的滚动轴承故障诊断模型(方法)。首先,使用Laplace小波对采集到的滚动轴承振动信号进行了相关滤波,得到了功率谱;然后,利用ICNN-BiGRU自动提取了功率谱特征,在卷积神经网络基础上引入了动态选择机制和自注意力机制,根据轴承不同故障状态定位了相关的特征信息,从而实现了轴承故障特征提取和故障诊断;最后,通过西安交通大学昇阳科技(XJTU-SY)联合实验室的滚动轴承加速寿命试验数据集,对ICNN-BiGRU模型与其他深度学习模型进行了对比,以验证ICNN-BiGRU模型的优越性。研究结果表明:相比于其他深度学习模型,ICNN-BiGRU模型的故障诊断精度更高,其诊断准确率可达99.65%;在不同背景噪声的干扰下,相比于其他深度学习模型,ICNN-BiGRU模型的特征学习能力更强,具有一定的工程参考价值。
关键词
深度学习模型
特征学习能力
改进卷积神经网络
双向门控循环单元
Laplace小波
动态选择
自注意力
Keywords
deep learning model
feature learning ability
improved convolutional neural network(ICNN)
bi-directional gated recurrent unit(BiGRU)
Laplace wavelet
dynamic selection(DS)
self-attention(SA)
分类号
TH133.33 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的病历质量控制系统设计
罗明
《计算机测量与控制》
2023
0
下载PDF
职称材料
2
基于MSCNNSA-BiGRU的变工况风电机组滚动轴承故障诊断研究
安文杰
陈长征
田淼
金毓林
孙鲜明
《机电工程》
CAS
北大核心
2022
12
下载PDF
职称材料
3
基于ICNN-BiGRU的轴承故障诊断模型
杨慧
张瑞君
陈国良
《机电工程》
CAS
北大核心
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部