The purpose of this paper is to define Hochschild type homology of Bihomassociative algebras and Chevalley-Eilenberg type homology of Bihom-Lie algebras with non-trivial coefficients in their bimodules respectively.In...The purpose of this paper is to define Hochschild type homology of Bihomassociative algebras and Chevalley-Eilenberg type homology of Bihom-Lie algebras with non-trivial coefficients in their bimodules respectively.In particular,we give their low order homology in detail.展开更多
A Bihom-Lie algebra is a generalized Hom-Lie algebra endowed with two commuting multiplicative linear maps.In this paper,we study representations of Bihom-Lie algebras.In particular,derivations,central extensions,deri...A Bihom-Lie algebra is a generalized Hom-Lie algebra endowed with two commuting multiplicative linear maps.In this paper,we study representations of Bihom-Lie algebras.In particular,derivations,central extensions,derivation extensions,the trivial representation and the adjoint representation of Bihom-Lie algebras are studied in detail.展开更多
In this paper,we introduce the notion of a product structure on a 3-Bihom-Lie algebra,which is a Nijenhuis operator with some conditions.We prove that a 3-Bihom-Lie algebra has a product structure if and only if it is...In this paper,we introduce the notion of a product structure on a 3-Bihom-Lie algebra,which is a Nijenhuis operator with some conditions.We prove that a 3-Bihom-Lie algebra has a product structure if and only if it is the direct sum of two vector spaces which are also Bihom-subalgebras.Then we give four special conditions under each of which a 3-Bihom-Lie algebra has a special decomposition.Similarly,we introduce a complex structure on a 3-Bihom-Lie algebra and there are also four types of special complex structures.Finally,we establish the relation between a complex structure and a product structure.展开更多
In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the ...In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.展开更多
Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bound...Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .展开更多
Some relationships between the representation of Hom-Jacobi-Jordan algebra and that of Jacobi-Jordan algebra are studied.Moreover,by using the notion ofαk-anti-derivation,a property theorem of multiplicative Hom-Jaco...Some relationships between the representation of Hom-Jacobi-Jordan algebra and that of Jacobi-Jordan algebra are studied.Moreover,by using the notion ofαk-anti-derivation,a property theorem of multiplicative Hom-Jacobi-Jordan algebras is also given.展开更多
In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and...In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and describe the extended eigenvalue of the integral operator V.We generalize the results in[1,2,6,11,16].展开更多
In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates th...In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates the Pauli algebra, the split-biquaternion algebra and the split-quaternion algebra, we relate these algebras to Clifford algebras and we show the emergence of the stabilized Poincaré-Heisenberg algebra from the split-tetraquaternion algebra. We list without going into details some of their applications in Physics and in Born geometry.展开更多
Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent m...Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).展开更多
Using the theory of derivations on finitely generated and graded Lie algebras, we determine that derivations of the BMS-Weyl algebra are all inner. On this basis, it is proved that every 2-local derivation of the BMS-...Using the theory of derivations on finitely generated and graded Lie algebras, we determine that derivations of the BMS-Weyl algebra are all inner. On this basis, it is proved that every 2-local derivation of the BMS-Weyl algebra is a derivation.展开更多
The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modu...The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modules.展开更多
The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers ...The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme.展开更多
In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obta...In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.展开更多
In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better...In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.展开更多
In this paper, we defined the concept of implicative and fuzzy implicative ideals of lattice implication algebras, and discussed the properties of them. And then, we pointed out the relations between implicative ideal...In this paper, we defined the concept of implicative and fuzzy implicative ideals of lattice implication algebras, and discussed the properties of them. And then, we pointed out the relations between implicative ideal and LI _ideal, implicative iedal and implicative filter, implicative ideal and fuzzy implicative ideal, fuzzy implicative ideal and fuzzy implicative filter, and fuzzy implicative ideal and fuzzy LI _ideal.展开更多
In this paper, we discuss some propertie s of lattice implication algebra and difine the transitivity of implication in a set, we show the transitivity of implication and the substitution Theorem hold i n filters. S...In this paper, we discuss some propertie s of lattice implication algebra and difine the transitivity of implication in a set, we show the transitivity of implication and the substitution Theorem hold i n filters. So every filter of lattice implication algebra satisfies the Syllogis m and substitution Theorem of propositional logic.展开更多
In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ...In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.展开更多
Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was...Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist .展开更多
Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component V...Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed.By using this dual source cumulative rotation technique in the frequency-domain(DCTF),anisotropic parameters,including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves,can be estimated for each frequency component in the frequency domain.It avoids the possible error which comes from using a narrow-band filter in the current commonly used method.By using synthetic seismograms,the feasibility and validity of the technique was tested and a comparison with the currently used method was also given.The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF.In the presence of larger scale fractures,substantial frequency dependence would be found in the seismic frequency range,which implies that dispersion would occur at seismic frequencies.Our study shows that shear-wave anisotropy decreases as frequency increases.展开更多
基金Supported by the National Science Foundation of China(Grant Nos.11047030,11171055).
文摘The purpose of this paper is to define Hochschild type homology of Bihomassociative algebras and Chevalley-Eilenberg type homology of Bihom-Lie algebras with non-trivial coefficients in their bimodules respectively.In particular,we give their low order homology in detail.
基金Supported by the National Science Foundation of China(Nos.11047030 and 11771122).
文摘A Bihom-Lie algebra is a generalized Hom-Lie algebra endowed with two commuting multiplicative linear maps.In this paper,we study representations of Bihom-Lie algebras.In particular,derivations,central extensions,derivation extensions,the trivial representation and the adjoint representation of Bihom-Lie algebras are studied in detail.
基金Supported by NNSF of China(No.12271085 and No.12071405)supported by Sichuan Science and Technology Program(No.2023NSFSC1287).
文摘In this paper,we introduce the notion of a product structure on a 3-Bihom-Lie algebra,which is a Nijenhuis operator with some conditions.We prove that a 3-Bihom-Lie algebra has a product structure if and only if it is the direct sum of two vector spaces which are also Bihom-subalgebras.Then we give four special conditions under each of which a 3-Bihom-Lie algebra has a special decomposition.Similarly,we introduce a complex structure on a 3-Bihom-Lie algebra and there are also four types of special complex structures.Finally,we establish the relation between a complex structure and a product structure.
文摘In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.
文摘Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .
基金National Natural Science Foundation of China(12071405,11571145)。
文摘Some relationships between the representation of Hom-Jacobi-Jordan algebra and that of Jacobi-Jordan algebra are studied.Moreover,by using the notion ofαk-anti-derivation,a property theorem of multiplicative Hom-Jacobi-Jordan algebras is also given.
基金Supported by National Natural Science Foundation of China(11801094).
文摘In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and describe the extended eigenvalue of the integral operator V.We generalize the results in[1,2,6,11,16].
文摘In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates the Pauli algebra, the split-biquaternion algebra and the split-quaternion algebra, we relate these algebras to Clifford algebras and we show the emergence of the stabilized Poincaré-Heisenberg algebra from the split-tetraquaternion algebra. We list without going into details some of their applications in Physics and in Born geometry.
文摘Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).
基金National Natural Science Foundation of China(11971315)。
文摘Using the theory of derivations on finitely generated and graded Lie algebras, we determine that derivations of the BMS-Weyl algebra are all inner. On this basis, it is proved that every 2-local derivation of the BMS-Weyl algebra is a derivation.
文摘The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modules.
文摘The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme.
基金supported by the National Natural Science Foundation of China (Nos.12171290,12301152)the Natural Science Foundation of Shanxi Province (No.202203021222018)。
文摘In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.
基金partially supported by the Natural Sciences and Engineering Research Council of Canada(2019-03907)。
文摘In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.
文摘In this paper, we defined the concept of implicative and fuzzy implicative ideals of lattice implication algebras, and discussed the properties of them. And then, we pointed out the relations between implicative ideal and LI _ideal, implicative iedal and implicative filter, implicative ideal and fuzzy implicative ideal, fuzzy implicative ideal and fuzzy implicative filter, and fuzzy implicative ideal and fuzzy LI _ideal.
文摘In this paper, we discuss some propertie s of lattice implication algebra and difine the transitivity of implication in a set, we show the transitivity of implication and the substitution Theorem hold i n filters. So every filter of lattice implication algebra satisfies the Syllogis m and substitution Theorem of propositional logic.
文摘In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.
文摘Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist .
基金supported by the National Natural Science Foundation of China (No. 41004055)
文摘Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed.By using this dual source cumulative rotation technique in the frequency-domain(DCTF),anisotropic parameters,including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves,can be estimated for each frequency component in the frequency domain.It avoids the possible error which comes from using a narrow-band filter in the current commonly used method.By using synthetic seismograms,the feasibility and validity of the technique was tested and a comparison with the currently used method was also given.The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF.In the presence of larger scale fractures,substantial frequency dependence would be found in the seismic frequency range,which implies that dispersion would occur at seismic frequencies.Our study shows that shear-wave anisotropy decreases as frequency increases.