期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Text Sentiment Analysis Based on Multi-Layer Bi-Directional LSTM with a Trapezoidal Structure
1
作者 Zhengfang He Cristina E.Dumdumaya Ivy Kim D.Machica 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期639-654,共16页
Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,m... Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,measure,and investigate affective states and subjective data.Sentiment analy-sis algorithms include emotion lexicon,traditional machine learning,and deep learning.In the text sentiment analysis algorithm based on a neural network,multi-layer Bi-directional long short-term memory(LSTM)is widely used,but the parameter amount of this model is too huge.Hence,this paper proposes a Bi-directional LSTM with a trapezoidal structure model.The design of the trapezoidal structure is derived from classic neural networks,such as LeNet-5 and AlexNet.These classic models have trapezoidal-like structures,and these structures have achieved success in the field of deep learning.There are two benefits to using the Bi-directional LSTM with a trapezoidal structure.One is that compared with the single-layer configuration,using the of the multi-layer structure can better extract the high-dimensional features of the text.Another is that using the trapezoidal structure can reduce the model’s parameters.This paper introduces the Bi-directional LSTM with a trapezoidal structure model in detail and uses Stanford sentiment treebank 2(STS-2)for experiments.It can be seen from the experimental results that the trapezoidal structure model and the normal structure model have similar performances.However,the trapezoidal structure model parameters are 35.75%less than the normal structure model. 展开更多
关键词 Text sentiment bi-directional lstm Trapezoidal structure
下载PDF
基于BiLSTM-CRF的中文生物医学开放式概念关系抽取 被引量:4
2
作者 王序文 李姣 +1 位作者 吴英杰 李军莲 《中华医学图书情报杂志》 CAS 2018年第11期33-39,共7页
目的:利用深度学习方法自动抽取中文生物医学文本中的开放式概念关系,以增强生物医学文本理解及医学知识网络构建。方法:使用BiLSTM-CRF模型从中文生物医学文献数据中抽取以句子上下文短语描述的开放式概念关系,并与基于条件随机场(Cond... 目的:利用深度学习方法自动抽取中文生物医学文本中的开放式概念关系,以增强生物医学文本理解及医学知识网络构建。方法:使用BiLSTM-CRF模型从中文生物医学文献数据中抽取以句子上下文短语描述的开放式概念关系,并与基于条件随机场(Conditional Random Fields,CRF)和基于长短时记忆网络(Long Short-Term Memory,LSTM)的方法进行对比分析。结果:基于BiLSTM-CRF的中文生物医学开放式概念关系抽取方法取得F1值为0.5221,显著高于基于CRF模型的方法(F1值为0.2353)和基于LSTM模型的方法(F1值为0.3355)。结论:与单独使用CRF模型或LSTM模型的方法相比,基于BiLSTM-CRF的开放式概念关系抽取方法具有更好的鲁棒性和泛化性,对于生物医学文本理解、医学知识网络构建等研究具有借鉴意义。 展开更多
关键词 开放式关系抽取 生物医学概念识别 bilstm-CRF 条件随机场 长短时记忆网络
下载PDF
基于BiLSTM模型的定义抽取方法 被引量:9
3
作者 阳萍 谢志鹏 《计算机工程》 CAS CSCD 北大核心 2020年第3期40-45,共6页
定义抽取是从非结构化文本中自动识别定义句的任务,定义抽取问题可建模为句子中术语及相应定义的序列标注问题,并利用标注结果完成抽取任务。针对传统的定义抽取方法在抽取定义特征过程中费时且容易造成错误传播的不足,提出一个基于双... 定义抽取是从非结构化文本中自动识别定义句的任务,定义抽取问题可建模为句子中术语及相应定义的序列标注问题,并利用标注结果完成抽取任务。针对传统的定义抽取方法在抽取定义特征过程中费时且容易造成错误传播的不足,提出一个基于双向长短时记忆(BiLSTM)的序列标注神经网络模型,对输入文本进行自动化定义抽取。通过将原始数据输入到BiLSTM神经网络中,完成输入句的特征表示,并采用基于LSTM的解码器进行解码得到标注结果。在Wikipedia英文数据集上的实验结果表明,该方法的精确率、召回率和F1值分别为94.21%、90.10%和92.11%,有效提升了基准模型效果。 展开更多
关键词 定义抽取 双向长短时记忆模型 序列标注 lstm模型 深度神经网络
下载PDF
基于BERT与BiLSTM的铁路安监文本分类方法 被引量:3
4
作者 张世同 《现代计算机》 2021年第22期38-42,共5页
安全是铁路的生命线,目前铁路安全监察采用发牌制度,进行安全质量考核管理,实现管理人员发牌、定责、整改、销号的闭环管理。但是,安全检查发牌过程存在着问题定位不准、分类模糊等问题。针对上述问题,结合现有的人工智能文本分类技术,... 安全是铁路的生命线,目前铁路安全监察采用发牌制度,进行安全质量考核管理,实现管理人员发牌、定责、整改、销号的闭环管理。但是,安全检查发牌过程存在着问题定位不准、分类模糊等问题。针对上述问题,结合现有的人工智能文本分类技术,试图实现自动分类,提高分类准确率,具有现实意义。提出基于BERT与BiLSTM的铁路安监文本分类模型,在字向量训练阶段使用BERT模型代替传统的Skip-Grams和CBOW模型,提升了字向量的表征能力进而提高了文本分类的准确率,与现有的基于词汇特征的TextCNN方法,基于深度学习的BiLSTM-attention方法相比,精确率和F1值显著提高。 展开更多
关键词 BERT bilstm lstm 文本分类 铁路文本分类
下载PDF
基于BiLSTM模型的新冠肺炎预测研究 被引量:1
5
作者 郭莎 花磊 《应用数学进展》 2022年第11期7870-7879,共10页
新型冠状肺炎疫情的持续蔓延给人类社会带来了深远影响,时至今日,疫情仍在世界范围内传播,新冠疫情发展趋势预测是一大研究焦点。传统传染病模型基于一系列数学假设进行建模预测,未考虑人口流动与反馈机制的影响,很难对新冠疫情传播趋... 新型冠状肺炎疫情的持续蔓延给人类社会带来了深远影响,时至今日,疫情仍在世界范围内传播,新冠疫情发展趋势预测是一大研究焦点。传统传染病模型基于一系列数学假设进行建模预测,未考虑人口流动与反馈机制的影响,很难对新冠疫情传播趋势进行可靠的预测;统计与机器学习模型单纯依据已有数据进行预测,难以有效提高预测精度。本文基于深度学习方法,构建多特征下的双向长短期记忆网络(BiLSTM)模型针对不同场景下的国家与地区的新冠疫情的发展趋势进行预测。选取决定系数R2与平均绝对百分比误差(MAPE)作为评价模型的指标,并与传统长短期记忆网络(LSTM)模型进行比较分析,实验结果表明BiLSTM模型具有更好的预测性能和实用性。 展开更多
关键词 新冠肺炎 深度学习 bilstm lstm
下载PDF
基于BiLSTM-EPEA模型的实体关系分类 被引量:1
6
作者 蒋丽媛 吴亚东 +1 位作者 张巍瀚 王书航 《计算机时代》 2023年第5期46-50,56,共6页
提出一种基于实体注意力相加机制的关系抽取模型BiLSTM-EPEA。即通过BiLSTM(双向的长短期记忆网络)对Glove表示的文本向量进行特征提取,通过EPEA模块分别计算每个字相对于第一个实体和第二个实体的注意力值,并将两个有权重的语句序列逐... 提出一种基于实体注意力相加机制的关系抽取模型BiLSTM-EPEA。即通过BiLSTM(双向的长短期记忆网络)对Glove表示的文本向量进行特征提取,通过EPEA模块分别计算每个字相对于第一个实体和第二个实体的注意力值,并将两个有权重的语句序列逐位相加,最后利用Softmax函数划分实体关系类别。通过实验证明,BiLSTM-EPEA相比于BiLSTM-ATT模型和RBERT模型,F1值分别提升了0.42%、1.47%,验证了模型的有效性。 展开更多
关键词 关系类别划分 bilstm-EPEA 实体注意力相加机制 长短期记忆网络
下载PDF
基于LSTM_eKan模型的建筑结构安全监测研究
7
作者 黄衡 潘志安 《科技创新与应用》 2024年第34期97-100,共4页
随着建筑结构日益复杂和规模不断扩大,结构安全监测在保障工程安全和延长结构使用寿命方面变得至关重要。该文提出一种基于LSTM_eKan深度学习模型的综合评估方法,用于监测和评估工程结构的安全状况。研究的核心在于开发和优化一套高效... 随着建筑结构日益复杂和规模不断扩大,结构安全监测在保障工程安全和延长结构使用寿命方面变得至关重要。该文提出一种基于LSTM_eKan深度学习模型的综合评估方法,用于监测和评估工程结构的安全状况。研究的核心在于开发和优化一套高效的数据预处理技术及预测模型,以提高监测数据的准确性和可靠性。LSTM_eKan模型通过引入注意力机制,能够更加精准地捕捉时间序列数据中的关键特征,减少冗余信息的干扰,从而大幅提升预测的精度与稳定性。与传统方法相比,LSTM_eKan在结构安全监测任务中展现显著的优势。 展开更多
关键词 结构安全监测 卡尔曼滤波 lstm bilstm lstm_eKan
下载PDF
基于改进LSTM的船体监测数据异常处理方法
8
作者 李费旭 周利 +1 位作者 丁仕风 韩森 《船舶工程》 CSCD 北大核心 2024年第7期90-102,121,共14页
为了解决船体监测数据异常识别模型适应性差、异常修复过程低效且准确率不高等问题,提出一种基于改进长短期记忆网络(LSTM)对异常数据进行识别和修复,并采用BiLSTM-AEE对应变和加速度数据进行试验验证。结果表明,该方法在识别精度和修... 为了解决船体监测数据异常识别模型适应性差、异常修复过程低效且准确率不高等问题,提出一种基于改进长短期记忆网络(LSTM)对异常数据进行识别和修复,并采用BiLSTM-AEE对应变和加速度数据进行试验验证。结果表明,该方法在识别精度和修复效果方面都有明显优势,其中异常识别精度平均值达到91.8%,异常修复平均误差不超过4%,能有效对船体监测数据进行异常的识别与修复。相比其他异常数据处理方法,该方法能够根据监测数据变化对异常进行同步识别,修复过程更加高效。 展开更多
关键词 船体监测数据 长短期记忆网络(lstm) Bi lstm-AEE 异常识别 异常修复
下载PDF
基于Lattice LSTM的古汉语命名实体识别 被引量:15
9
作者 崔丹丹 刘秀磊 +3 位作者 陈若愚 刘旭红 李臻 齐林 《计算机科学》 CSCD 北大核心 2020年第S02期18-22,共5页
基于《四库全书》数据集,研究古汉语的命名实体识别技术。提出了基于Lattice LSTM模型的古汉语命名实体识别算法,该方法将字符序列信息和词序列信息共同作为模型的输入。采用甲言(jiayan)分词工具,利用word2vec训练古文字、词向量并作为... 基于《四库全书》数据集,研究古汉语的命名实体识别技术。提出了基于Lattice LSTM模型的古汉语命名实体识别算法,该方法将字符序列信息和词序列信息共同作为模型的输入。采用甲言(jiayan)分词工具,利用word2vec训练古文字、词向量并作为Lattice LSTM模型的输入,提升了古汉语命名实体识别的效果。基于Lattice LSTM模型和预训练的古文字、词向量,提高了古汉语的实体识别效果,相比传统的BiLSTM-CRF模型,其F1分数提升3.95%左右。 展开更多
关键词 古汉语 命名实体识别 bilstm-CRF Lattice lstm 深度学习
下载PDF
基于改进LSTMs模型的区域中长期气温预测方法研究 被引量:1
10
作者 杨乐 马驰 +1 位作者 胡辉 黄冬 《惠州学院学报》 2021年第6期75-79,99,共6页
结合残差网络阶跃连接的优点,基于长短期记忆网络模型(LSTM)和双向长短期记忆网络模型(BiLSTM),提出了对区域中长期气温预测准确率较高的DeepLSTMs网络模型.利用主成分分析对哈尔滨2007-2018年逐时气象资料进行降维,得到温度预测的主要... 结合残差网络阶跃连接的优点,基于长短期记忆网络模型(LSTM)和双向长短期记忆网络模型(BiLSTM),提出了对区域中长期气温预测准确率较高的DeepLSTMs网络模型.利用主成分分析对哈尔滨2007-2018年逐时气象资料进行降维,得到温度预测的主要影响因素,对气象要素进行预处理和重构,并结合DeepLSTMs网络模型对哈尔滨市中长期气温进行了大量的预测实验.结果表明,利用DeepLSTMs网络模型对该地区中长期气温的预测精度高于比较所用方法. 展开更多
关键词 lstm bilstm Deeplstms 区域中长期气温预测
下载PDF
基于Word2Vec词嵌入和双向LSTM模型对用户回答文本进行分类 被引量:4
11
作者 张良君 《电子技术与软件工程》 2021年第14期208-211,共4页
本文将利用Word2Vec+双向LSTM对用户回答的短文本进行分类,同时跟Word2Vec+单向LSTM的效果进行对比,以验证双向LSTM和单向LSTM方法的优劣。
关键词 短文本分类 Word2Vec 词嵌入(Embedding) 双向lstm模型(bilstm)
下载PDF
基于注意力机制优化的BiLSTM珠江口水质预测模型 被引量:1
12
作者 陈湛峰 李晓芳 《环境科学》 EI CAS CSCD 北大核心 2024年第6期3205-3213,共9页
为提高珠江口水质预测精度和稳定性,提出了基于时间和特征双注意力机制优化的Bi LSTM水质预测模型,引入特征注意力机制强化模型捕获参数重要特征能力,加入时间注意力机制提高对时间序列相关性信息及水质波动细节信息的挖掘能力.将新模... 为提高珠江口水质预测精度和稳定性,提出了基于时间和特征双注意力机制优化的Bi LSTM水质预测模型,引入特征注意力机制强化模型捕获参数重要特征能力,加入时间注意力机制提高对时间序列相关性信息及水质波动细节信息的挖掘能力.将新模型应用于珠江8个入海口水质预测,开展预测性能试验、泛化能力试验和特征参数扩展性试验.结果表明:①新模型在珠海大桥水质预测取得了较高的预测精度,预测值与实测值的均方根误差RMSE为0.0041 mg·L^(-1),决定系数R^(2)为98.3%.与Multi-Bi LSTM、Multi-LSTM、Bi LSTM和LSTM对比,表明新模型预测精度最高,验证了模型的精准性.②训练样本数量和预测步数均对模型预测精度产生影响,模型预测精度随着训练样本的增加而提升,海珠大桥断面总磷预测时,240组以上训练样本可获得较高预测精度;增加预测步数,会使模型预测精度迅速下降,预测步数大于5步时无法保障模型预测的可靠性.③将新模型应用于珠江8个入海口不同水质指标预测,预测结果均取得较高精度,模型具有较强的泛化能力;输入对象断面预测指标相关联的上游来水、降雨量等特征参数,能够提高模型预测精度.通过多方面多次试验,结果表明新模型能够较好地满足珠江口水质预测精度、适用性和扩展性要求,为复杂水动力环境水体水质高精度预测进行了新的探索. 展开更多
关键词 特征注意力机制 时间注意力机制 bilstm模型 lstm模型 珠江口 水质预测
原文传递
冬小麦需水量的预测模型对比分析
13
作者 杜云 张婧婧 +2 位作者 雷嘉诚 李博 李永福 《新疆农业科学》 CAS CSCD 北大核心 2024年第7期1590-1596,共7页
【目的】构建冬小麦需水量预测模型,提高需水量预测的精准度,为基于气象信息的需水量预测提供更为可靠的方法。【方法】选取新疆奇台县近5年的气象数据,采用公式Penman-Monteith计算冬小麦需水量(近似为真实需水量),基于CNN-BiLSTM模型... 【目的】构建冬小麦需水量预测模型,提高需水量预测的精准度,为基于气象信息的需水量预测提供更为可靠的方法。【方法】选取新疆奇台县近5年的气象数据,采用公式Penman-Monteith计算冬小麦需水量(近似为真实需水量),基于CNN-BiLSTM模型,将平均温度、风速、湿度和降水量4个变量作为输入参数,预测冬小麦需水量,对比评估预测CNN-BiLSTM与LSTM、BiLSTM等6种模型的精准性。【结果】采用少量参数分别输入BP、RNN、LSTM、改进的BiLSTM和CNN-BiLSTM等模型中预测需水量,BP神经网络的预测效果较差。在模型评估中,CNN-BiLSTM比LSTM的R 2提高约8%,MSE降低约0.56。【结论】CNN-BiLSTM模型对小麦需水量预测更加精准。 展开更多
关键词 冬小麦 需水量 预测 lstm CNN-bilstm
下载PDF
DPAL-BERT:A Faster and Lighter Question Answering Model
14
作者 Lirong Yin Lei Wang +8 位作者 Zhuohang Cai Siyu Lu Ruiyang Wang Ahmed AlSanad Salman A.AlQahtani Xiaobing Chen Zhengtong Yin Xiaolu Li Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期771-786,共16页
Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the ... Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the increasing size and complexity of these models have led to increased training costs and reduced efficiency.This study aims to minimize the inference time of such models while maintaining computational performance.It also proposes a novel Distillation model for PAL-BERT(DPAL-BERT),specifically,employs knowledge distillation,using the PAL-BERT model as the teacher model to train two student models:DPAL-BERT-Bi and DPAL-BERTC.This research enhances the dataset through techniques such as masking,replacement,and n-gram sampling to optimize knowledge transfer.The experimental results showed that the distilled models greatly outperform models trained from scratch.In addition,although the distilled models exhibit a slight decrease in performance compared to PAL-BERT,they significantly reduce inference time to just 0.25%of the original.This demonstrates the effectiveness of the proposed approach in balancing model performance and efficiency. 展开更多
关键词 DPAL-BERT question answering systems knowledge distillation model compression BERT bi-directional long short-term memory(bilstm) knowledge information transfer PAL-BERT training efficiency natural language processing
下载PDF
基于双向长短期记忆循环神经网络的网络流量预测 被引量:8
15
作者 杜秀丽 范志宇 +1 位作者 吕亚娜 邱少明 《计算机应用与软件》 北大核心 2022年第2期144-149,156,共7页
针对长短期记忆循环神经网络在对时间序列进行学习时存在早期特征记忆效果差、难以充分挖掘整个网络流量特征等问题,提出一种基于双向长短期记忆循环神经网络的网络流量预测方法,以提高网络流量预测的准确性。对网络流量序列进行双向学... 针对长短期记忆循环神经网络在对时间序列进行学习时存在早期特征记忆效果差、难以充分挖掘整个网络流量特征等问题,提出一种基于双向长短期记忆循环神经网络的网络流量预测方法,以提高网络流量预测的准确性。对网络流量序列进行双向学习,避免单向学习导致较早学习部分特征提取和记忆效果差的问题。同时双向学习可以充分挖掘网络流量天与天之间双向的特征,完整地学习到网络流量的整体特征。仿真实验结果表明,改进后的方法相比原方法具有更好的预测效果。 展开更多
关键词 网络流量预测 自相似性 bilstm lstm
下载PDF
CStock:一种结合新闻与股价的股票走势预测模型 被引量:2
16
作者 陈可心 黄刚 《计算机技术与发展》 2020年第9期18-22,共5页
股票是一种高风险、高收益的常见理财产品,为了更好地进行股票投资分析,获得有效的选股方案,文中提出了一种预测股票走势的模型CStock。与现有的股票走势预测模型相比,CStock模型结合新闻和股价走势进行预测,不但利用了股票市场中的交... 股票是一种高风险、高收益的常见理财产品,为了更好地进行股票投资分析,获得有效的选股方案,文中提出了一种预测股票走势的模型CStock。与现有的股票走势预测模型相比,CStock模型结合新闻和股价走势进行预测,不但利用了股票市场中的交易数据,同时考虑到财经以及政治新闻对于股票市场的影响。CStock模型主要由BiLSTM和CLSTM混合构建,BiLSTM提取股票交易数据的相关特征,CLSTM对新闻的语境特征进行整合和处理,最终通过全连接层输出预测结果。在实验模型中,对股票走势采用分类方法进行实验,得到分类为股票上升的概率和股票下降的概率。实验使用美股数据作为数据集合。通过准确率和收益率进行预测效果评估,实验结果表明,CStock模型在一定程度上能够准确有效地对股票走势进行预测。 展开更多
关键词 股票预测 深度学习 lstm bilstm Clstm
下载PDF
运用双向长短期记忆模型的心拍分类算法 被引量:1
17
作者 朱彬如 万相奎 +2 位作者 金志尧 刘俊杰 张明瑞 《华侨大学学报(自然科学版)》 CAS 2021年第3期384-390,共7页
为提高心拍的分类效果,研究基于双向长短期记忆(BiLSTM)模型的深度学习算法.首先,采用“双斜率”法对心电信号进行预处理;然后,设计自适应阈值对预处理后的心电信号进行QRS波定位,并依据R波波峰分割截取心拍;最后,采用BiLSTM模型的深度... 为提高心拍的分类效果,研究基于双向长短期记忆(BiLSTM)模型的深度学习算法.首先,采用“双斜率”法对心电信号进行预处理;然后,设计自适应阈值对预处理后的心电信号进行QRS波定位,并依据R波波峰分割截取心拍;最后,采用BiLSTM模型的深度学习算法对获取的心拍形态进行分类.使用MIT-BIH心率失常数据库验证算法有效性,实验结果表明:文中算法对正常或束支传导阻滞(N)、室上性异常(S)、心室异常(V)、融合(F)类型的敏感性分别为98.56%,97.10%,93.33%,79.52%,特异性分别为98.38%,98.08%,98.54%,99.65%;与传统的支持向量机等方法相比,文中算法能够进一步提高心拍分类的正确率. 展开更多
关键词 lstm bilstm 心拍分类 自适应阈值
下载PDF
一种使用RoBERTa-BiLSTM-CRF的中文地址解析方法 被引量:6
18
作者 张红伟 杜清运 +1 位作者 陈张建 张琛 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2022年第5期665-672,共8页
针对当前地址匹配方法严重依赖分词词典、无法有效识别地址中的地址元素及其所属类型的问题,提出了使用深度学习的中文地址解析方法,该方法能够对解析后的地址进行标准化和构成分析以改善地址匹配结果。通过对地址的不同词向量表示及不... 针对当前地址匹配方法严重依赖分词词典、无法有效识别地址中的地址元素及其所属类型的问题,提出了使用深度学习的中文地址解析方法,该方法能够对解析后的地址进行标准化和构成分析以改善地址匹配结果。通过对地址的不同词向量表示及不同序列标注模型的对比评估,结果表明,使用双向门递归单元和双向长短时记忆网络对中文地址解析差别较小,稀疏注意力机制有助于提高地址解析的F1值。所提出的方法在泛化能力测试集上的F1值达到了0.940,在普通测试集上的F1值达到了0.968。 展开更多
关键词 地址解析 中文地址分词 注意力机制 长短时记忆网络 RoBERTa bilstm CRF
原文传递
基于BiLSTM-CRF的中文层级地址分词 被引量:16
19
作者 程博 李卫红 童昊昕 《地球信息科学学报》 CSCD 北大核心 2019年第8期1143-1151,共9页
中文地址分词是中文地址标准化的基础工作和地理编码的重要手段,同时也是中文分词和地理研究领域中关注的热点问题之一。针对当前中文地址分词方法缺乏地址层级切分和过多依赖词典和特征的问题,本研究结合四词位标注集和中文层级地址特... 中文地址分词是中文地址标准化的基础工作和地理编码的重要手段,同时也是中文分词和地理研究领域中关注的热点问题之一。针对当前中文地址分词方法缺乏地址层级切分和过多依赖词典和特征的问题,本研究结合四词位标注集和中文层级地址特点,构建针对中文层级地址分词的地址标注体系,并提出融合双向长短时记忆网络和条件随机场(BiLSTM-CRF)的中文层级地址分词模型。该模型既考虑了BiLSTM模型能够记忆上下文地址的特性,也保留了CRF算法可以通过转移概率矩阵控制地址标注输出的能力。针对该地址标注体系标注的训练地址样本,分别使用CRF、LSTM、BiLSTM与BiLSTM-CRF模型进行训练对比。结果表明:①基于中文地址标注体系的模型分词效果更佳,地址标注更为精细,符合实际地址分布情况;②BiLSTM-CRF模型精确度达到93.4%,高于CRF(90.4%)、LSTM(89.3%)和BiLSTM(91.2%),其整体地址分词性能和各层级地址分词效果相对于其他模型更突出;③各模型分词性能与地址层级保持一致,即地址层级越高,分词效果越好。本研究提出的中文地址标注体系和分词模型为开展中文地址标准化工作提供了方法参考,同时也为进一步提升地理编码技术的精准度提供了可能。 展开更多
关键词 中文分词 地址标注 中文层级地址分词 长短时记忆网络(lstm) 双向长短时记忆和条件随机场模型(bilstm-CRF)
原文传递
融合情感与语义信息的情感分析方法 被引量:14
20
作者 孟仕林 赵蕴龙 +1 位作者 关东海 翟象平 《计算机应用》 CSCD 北大核心 2019年第7期1931-1935,共5页
在使用词嵌入法进行词转向量时,两个反义词会转换成相近的向量。如果这两个词是情感词,将会导致词的情感信息的丢失,这在情感分析任务中是不合理的。为了解决这个问题,提出了一种在词嵌入的基础上增加情感向量来获取情感信息的方法。首... 在使用词嵌入法进行词转向量时,两个反义词会转换成相近的向量。如果这两个词是情感词,将会导致词的情感信息的丢失,这在情感分析任务中是不合理的。为了解决这个问题,提出了一种在词嵌入的基础上增加情感向量来获取情感信息的方法。首先利用情感词典资源构建情感向量,将其与词嵌入法得到的词向量融合在一起;然后采用双向长短期记忆(BiLSTM)网络获取文本的特征;最后对文本的情感进行分类。在4个数据集上分别对该方法与未融合情感向量的方法进行了实验。实验结果表明所提方法分类准确度与F1值都高于未融合方法,说明了加入情感向量有助于提高情感分析的性能。 展开更多
关键词 情感分析 词嵌入 情感词 情感信息 双向长短期记忆网络
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部