A novel and effective BiOCl0.9I0.1/x%β-Bi2O3 composite catalyst was synthesized through a precipitation method. The structure, morphology, and optical properties of the samples were certified by X-ray diffraction, UV...A novel and effective BiOCl0.9I0.1/x%β-Bi2O3 composite catalyst was synthesized through a precipitation method. The structure, morphology, and optical properties of the samples were certified by X-ray diffraction, UV-Vis diffuse reflectance, scanning electron microscopy, and X-ray photoelectron spectroscopic characterizations. Photocatalytic experiments demonstrated that the synthesized BiOCl0.9I0.1/x%β-Bi2O3 composite catalyst exhibited excellent photocatalytic performance toward the degradation of tetracycline hydrochloride(TCH) under simulated sunlight. Furthermore, the TCH degradation rate of BiOCl0.9I0.1/15%β-Bi2O3 increased by 27.6% and 61.4% compared with those of the pure BiOCl0.9I0.1 and pure β-Bi2O3, respectively. Due to the multiple vacancies and valence states possessed by BiOCl0.9I0.1/x%β-Bi2O3, namely Bi5+, Bi(3-x)+, Bi5+–O, Bi3+–O, I- and I3-, the charge separation in photocatalysis reactions can be effectively promoted. The Mott-Schottky measurements indicate that the conduction band(CB) level of BiOCl0.9I0.1/15%β-Bi2O3 becomes more negative relative to that of BiOCl0.9I0.1, guaranteeing an advantageous effect on the redox ability of the photocatalyst. This study provides a new bright spot for the construction of high-performance photocatalysts.展开更多
Fe_(2)O_(3)was synthesized by the solvothermal method,and the synthesized Fe_(2)O_(3)was added in the process of preparing BiOCl by hydrolysis,and then Fe_(2)O_(3)/BiOCl photocatalytic materials with different composi...Fe_(2)O_(3)was synthesized by the solvothermal method,and the synthesized Fe_(2)O_(3)was added in the process of preparing BiOCl by hydrolysis,and then Fe_(2)O_(3)/BiOCl photocatalytic materials with different composite ratios were prepared.The optimal Fe_(2)O_(3)/BiOCl(1Fe/50Bi)sample showed a highest photocatalytic efficiency for cationic dyes(Rhodamine B)and anionic dye(methyl orange)degradation irradiated with visible light,as compared with that of a bare BiOCl catalyst.Meanwhile,radical capturing experiments indicated that the photo-induced holes(h^(+)) is the main active species.X-ray powder diffraction and ultraviolet-visible diffuse reflectance spectroscopy were used to characterize the structural and optical properties,which proved that Fe_(2)O_(3)was successfully composited to the BiOCl surface and effectively reduced the bandgap of BiOCl.More importantly,the optimal 1Fe/50Bi sample shows the highest photocatalytic efficiency for tetracycline(TC)degradation(98%)irradiated with visible light,as compared with that of a bare BiOCl catalyst.Consequently,the Fe_(2)O_(3)/BiOCl photocatalyst have potential applications in environmental purification.展开更多
Ag3PO4 is widely used in the field of photocatalysis because of its unique activity. However, photocorrosion limits its practical application. Therefore, it is very urgent to find a solution to improve the light corro...Ag3PO4 is widely used in the field of photocatalysis because of its unique activity. However, photocorrosion limits its practical application. Therefore, it is very urgent to find a solution to improve the light corrosion resistance of Ag3PO4. Herein, the Z-scheme WO3(H2O)0.333/Ag3PO4 composites are successfully prepared through microwave hydrothermal and simple stirring. The WO3(H2O)0.333/Ag3PO4 composites are characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis spectroscopy. In the degradation of organic pollutants, WO3(H2O)0.333/Ag3PO4 composites exhibit excellent performance under visible light. This is mainly attributed to the synergy of WO3(H2O)0.333 and Ag3PO4. Especially, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is the highest, and the methylene blue can be completely degraded in 4 min. In addition, the stability of the composites is also greatly enhanced. After five cycles of testing, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is not obviously decreased. However, the degradation efficiency of Ag3PO4 was only 20.2%. This indicates that adding WO3(H2O)0.333 can significantly improve the photoetching resistance of Ag3PO4. Finally, Z-scheme photocatalytic mechanism is investigated.展开更多
A novel In203/Bi24O31Br10 composite photocatalyst, where In2O3 nanoparticleswith the diameter of about 5-10 nm were tightly attached on the surface of Bi24O31Br10 plates, wasprepared by using hydrolysis, impregnation ...A novel In203/Bi24O31Br10 composite photocatalyst, where In2O3 nanoparticleswith the diameter of about 5-10 nm were tightly attached on the surface of Bi24O31Br10 plates, wasprepared by using hydrolysis, impregnation method and post-thermal process. Photocatalyticactivity was evaluated by the degradation of Rhodamine B under the visible light irradiation.Effects of the contents of In203 nanoparticles on the optical property and photocatalytic activity of In203/Bi24O31Br10 composite were also investigated. Compared with neat In203 and Bi24O31Brlomaterials, 15In203/Bi24O31Br10 composite exhibits the best photocatalytic activity owing to theefficient separation of photogenerated electron and hole pairs, which is evidenced byphotoluminence spectra. More than 95% of Rhodamine B solution can be degraded by15In203/Bi24O31Brlo sample in 30 min.展开更多
The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influenc...The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.展开更多
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer...A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.展开更多
Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particula...Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particulates. To avoid poor inter-face bonding and stress distribution,the gradient structure of biology materials was found as the model and therefore the gradient composite coating was prepared. The morphology of the composite coatings was flatter and the microstructure was denser than that of pure Ni-Co coatings. The composite coatings were prepared by different current densities,and the 2-D and 3-D morphologies of the surface coatings were observed. The result indicated that the 2-D structure became rougher and the 3-D surface density of apices became less when the current density was increased. The content of nanoparticulates reached a maximum value at the current density of 40mA·cm^-2,at the same time the properties including microhardness and wear-resistance were analyzed. The microhardness reached a maximum value and the wear volume was also less at the current density of 40mA·cm^-2. The reason was that nano-Al2O3 particles caused dispersive strengthening and grain refining.展开更多
Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of ...Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of load, sliding speed and long time continuous friction on friction and wear properties of Al-5%Si-Al2O3 composites were investigated, respectively. Wear surface and wear mechanism of Al-5%Si-Al2O3 composites were studied by Quanta 200 FE-SEM. Results showed that with load increasing, wear loss and coefficient of friction increased. With sliding speed going up, the surface temperature of sample made the rate of the producing of oxidation layer increase, while wear loss and coefficient of friction decreased. With the sliding distance increasing, coefficient of friction increased because the adhesive wear mechanism occurred in the initial stage, then formation and destruction of the oxide layer on the surface of the sample tended to a dynamic equilibrium, the surface state of the sample was relatively stable and so did the coefficient of friction. The experiment shows that the main wear mechanism of Al-5%Si-Al2O3 composites includes abrasive wear, adhesive wear and oxidation wear.展开更多
Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the...Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.展开更多
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with...(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.展开更多
The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-...The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.展开更多
The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r...The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were...Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were investigated by various methods. The results indicate that the CuO particle size has a significant effect on the temperature at which the complete reaction in the Al-CuO system occurs:the temperature is 200 ℃ lower in the Al-CuO system containing CuO particles with sizes less than 6μm than that containing CuO particles with sizes less than 100μm. The interfacial bonding between Al2O3 particles and Al is not complete when the temperature is below a critical value. The morphology of the Al2O3 particles varies from ribbon-like shape to near spherical shape when the temperature is above a critical value. These two critical temperatures are affected by the particle size of CuO, and the critical temperature of the sample containing CuO particles with sizes less than 6μm is 100 ℃ lower than that of the sample containing CuO particles with sizes less than 100μm.展开更多
文摘A novel and effective BiOCl0.9I0.1/x%β-Bi2O3 composite catalyst was synthesized through a precipitation method. The structure, morphology, and optical properties of the samples were certified by X-ray diffraction, UV-Vis diffuse reflectance, scanning electron microscopy, and X-ray photoelectron spectroscopic characterizations. Photocatalytic experiments demonstrated that the synthesized BiOCl0.9I0.1/x%β-Bi2O3 composite catalyst exhibited excellent photocatalytic performance toward the degradation of tetracycline hydrochloride(TCH) under simulated sunlight. Furthermore, the TCH degradation rate of BiOCl0.9I0.1/15%β-Bi2O3 increased by 27.6% and 61.4% compared with those of the pure BiOCl0.9I0.1 and pure β-Bi2O3, respectively. Due to the multiple vacancies and valence states possessed by BiOCl0.9I0.1/x%β-Bi2O3, namely Bi5+, Bi(3-x)+, Bi5+–O, Bi3+–O, I- and I3-, the charge separation in photocatalysis reactions can be effectively promoted. The Mott-Schottky measurements indicate that the conduction band(CB) level of BiOCl0.9I0.1/15%β-Bi2O3 becomes more negative relative to that of BiOCl0.9I0.1, guaranteeing an advantageous effect on the redox ability of the photocatalyst. This study provides a new bright spot for the construction of high-performance photocatalysts.
基金financially supported by the National Natural Science Foundation of China (51901209)
文摘Fe_(2)O_(3)was synthesized by the solvothermal method,and the synthesized Fe_(2)O_(3)was added in the process of preparing BiOCl by hydrolysis,and then Fe_(2)O_(3)/BiOCl photocatalytic materials with different composite ratios were prepared.The optimal Fe_(2)O_(3)/BiOCl(1Fe/50Bi)sample showed a highest photocatalytic efficiency for cationic dyes(Rhodamine B)and anionic dye(methyl orange)degradation irradiated with visible light,as compared with that of a bare BiOCl catalyst.Meanwhile,radical capturing experiments indicated that the photo-induced holes(h^(+)) is the main active species.X-ray powder diffraction and ultraviolet-visible diffuse reflectance spectroscopy were used to characterize the structural and optical properties,which proved that Fe_(2)O_(3)was successfully composited to the BiOCl surface and effectively reduced the bandgap of BiOCl.More importantly,the optimal 1Fe/50Bi sample shows the highest photocatalytic efficiency for tetracycline(TC)degradation(98%)irradiated with visible light,as compared with that of a bare BiOCl catalyst.Consequently,the Fe_(2)O_(3)/BiOCl photocatalyst have potential applications in environmental purification.
基金supported by the National Natural Science Foundation of China(51572103 and 51502106)the Distinguished Young Scholar of Anhui Province(1808085J14)+2 种基金the Foundation for Young Talents in College of Anhui Province(gxyqZD2017051)the Key Foundation of Educational Commission of Anhui Province(KJ2016SD53)the Innovation Team of Design and Application of Advanced Energetic Materials(KJ2015TD003)~~
文摘Ag3PO4 is widely used in the field of photocatalysis because of its unique activity. However, photocorrosion limits its practical application. Therefore, it is very urgent to find a solution to improve the light corrosion resistance of Ag3PO4. Herein, the Z-scheme WO3(H2O)0.333/Ag3PO4 composites are successfully prepared through microwave hydrothermal and simple stirring. The WO3(H2O)0.333/Ag3PO4 composites are characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis spectroscopy. In the degradation of organic pollutants, WO3(H2O)0.333/Ag3PO4 composites exhibit excellent performance under visible light. This is mainly attributed to the synergy of WO3(H2O)0.333 and Ag3PO4. Especially, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is the highest, and the methylene blue can be completely degraded in 4 min. In addition, the stability of the composites is also greatly enhanced. After five cycles of testing, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is not obviously decreased. However, the degradation efficiency of Ag3PO4 was only 20.2%. This indicates that adding WO3(H2O)0.333 can significantly improve the photoetching resistance of Ag3PO4. Finally, Z-scheme photocatalytic mechanism is investigated.
基金supported by the Natural Science Foundation of Fujian Province(2016J01740)National Natural Science Foundation of China(21473096)the Outstanding Youth Scientific Research Cultivation Plan in Fujian Province University,and the guiding project of Fujian Province(2016Y0073)
文摘A novel In203/Bi24O31Br10 composite photocatalyst, where In2O3 nanoparticleswith the diameter of about 5-10 nm were tightly attached on the surface of Bi24O31Br10 plates, wasprepared by using hydrolysis, impregnation method and post-thermal process. Photocatalyticactivity was evaluated by the degradation of Rhodamine B under the visible light irradiation.Effects of the contents of In203 nanoparticles on the optical property and photocatalytic activity of In203/Bi24O31Br10 composite were also investigated. Compared with neat In203 and Bi24O31Brlomaterials, 15In203/Bi24O31Br10 composite exhibits the best photocatalytic activity owing to theefficient separation of photogenerated electron and hole pairs, which is evidenced byphotoluminence spectra. More than 95% of Rhodamine B solution can be degraded by15In203/Bi24O31Brlo sample in 30 min.
基金Item Sponsored by Provincial Natural Science Foundation of Jiangsu of China(BK2000012)
文摘The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.
基金Projects (51101096, 51002093) supported by the National Natural Science Foundation of ChinaProject (1052nm05000) supported by Special Foundation of the Shanghai Science and Technology Commission for Nano-Materials ResearchProject (J51042) supported by Leading Academic Discipline Project of the Shanghai Education Commission, China
文摘A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.
基金the National Natural Science Foundation of China (No50635030)the National Basic Research of China (No2007CB616913)the Program for New Century Excellent Talents in University (2005)
文摘Metal and nano-ceramic nanocomposite coatings were prepared on the gray cast iron surface by the electrodeposition method. The Ni-Co was used as the metal matrix,and nano-Al2O3 was chosen as the second-phase particulates. To avoid poor inter-face bonding and stress distribution,the gradient structure of biology materials was found as the model and therefore the gradient composite coating was prepared. The morphology of the composite coatings was flatter and the microstructure was denser than that of pure Ni-Co coatings. The composite coatings were prepared by different current densities,and the 2-D and 3-D morphologies of the surface coatings were observed. The result indicated that the 2-D structure became rougher and the 3-D surface density of apices became less when the current density was increased. The content of nanoparticulates reached a maximum value at the current density of 40mA·cm^-2,at the same time the properties including microhardness and wear-resistance were analyzed. The microhardness reached a maximum value and the wear volume was also less at the current density of 40mA·cm^-2. The reason was that nano-Al2O3 particles caused dispersive strengthening and grain refining.
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金Project(51201143)supported by the National Natural Science Foundation of ChinaProject(SWJTU12BR004)supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-5%Si-AI2O3 composites were prepared by powder metallurgy and in-situ reactive synthesis technology. Friction and wear properties of Al-5%Si-Al2O3 composites were studied using an M-2000 wear tester. The effects of load, sliding speed and long time continuous friction on friction and wear properties of Al-5%Si-Al2O3 composites were investigated, respectively. Wear surface and wear mechanism of Al-5%Si-Al2O3 composites were studied by Quanta 200 FE-SEM. Results showed that with load increasing, wear loss and coefficient of friction increased. With sliding speed going up, the surface temperature of sample made the rate of the producing of oxidation layer increase, while wear loss and coefficient of friction decreased. With the sliding distance increasing, coefficient of friction increased because the adhesive wear mechanism occurred in the initial stage, then formation and destruction of the oxide layer on the surface of the sample tended to a dynamic equilibrium, the surface state of the sample was relatively stable and so did the coefficient of friction. The experiment shows that the main wear mechanism of Al-5%Si-Al2O3 composites includes abrasive wear, adhesive wear and oxidation wear.
基金Project(GC13A113)supported by the Technology Research and Development Program of Heilongjiang Provincial Science and Technology DepartmentProject(12511469)supported by Heilongjiang Provincial Science and Technology Department
文摘Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.
基金Project(51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.
文摘The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(2010BB4074)supported by the Natural Science Foundation of Chongqing Municipality,ChinaProject(2010ZD-02)supported by the State Key Laboratory for Advanced Metals and Materials,China
文摘The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
基金Project(2012MS0801)supported by the Natural Science Foundation of Inner Mongolia,China
文摘Al2O3p-Al composites were synthesized using an in-situ reaction in the 80%Al-20%CuO (mass fraction) system. The effects of the CuO particle size on the synthesis temperature and microstructure of the composites were investigated by various methods. The results indicate that the CuO particle size has a significant effect on the temperature at which the complete reaction in the Al-CuO system occurs:the temperature is 200 ℃ lower in the Al-CuO system containing CuO particles with sizes less than 6μm than that containing CuO particles with sizes less than 100μm. The interfacial bonding between Al2O3 particles and Al is not complete when the temperature is below a critical value. The morphology of the Al2O3 particles varies from ribbon-like shape to near spherical shape when the temperature is above a critical value. These two critical temperatures are affected by the particle size of CuO, and the critical temperature of the sample containing CuO particles with sizes less than 6μm is 100 ℃ lower than that of the sample containing CuO particles with sizes less than 100μm.