Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
BiOIO3 is a layered semiconductor photocatalyst,which has good chemical properties and has attracted wide attention from researchers because of its unique structure.However,pure BiOIO3 has defects such as insufficient...BiOIO3 is a layered semiconductor photocatalyst,which has good chemical properties and has attracted wide attention from researchers because of its unique structure.However,pure BiOIO3 has defects such as insufficient response to visible light and easy recombination of photogenerated electrons.Therefore,in recent years,scholars have tried to modify BiOIO3 to expand its light absorption range,reduce the recombination of photogenerated electron-hole pairs and reduce its limitations,thereby improving its visible light catalytic performance.Current researches focus on the improvement of the catalytic activity of photocatalytic materials from morphology control,precious metal deposition,ion doping and construction of heterojunctions.展开更多
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX20_0935)。
文摘BiOIO3 is a layered semiconductor photocatalyst,which has good chemical properties and has attracted wide attention from researchers because of its unique structure.However,pure BiOIO3 has defects such as insufficient response to visible light and easy recombination of photogenerated electrons.Therefore,in recent years,scholars have tried to modify BiOIO3 to expand its light absorption range,reduce the recombination of photogenerated electron-hole pairs and reduce its limitations,thereby improving its visible light catalytic performance.Current researches focus on the improvement of the catalytic activity of photocatalytic materials from morphology control,precious metal deposition,ion doping and construction of heterojunctions.