期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
NiFe layered double-hydroxide nanoparticles for efficiently enhancing performance of BiVO_4 photoanode in photoelectrochemical water splitting 被引量:3
1
作者 Qizhao Wang Tengjiao Niu +2 位作者 Lei Wang Jingwei Huang Houde She 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期613-618,共6页
A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can ... A bismuth vanadate(BiVO4)photoanode with a cocatalyst consisting of NiFe layered double‐hydroxide(NiFe‐LDH)nanoparticles was fabricated for photoelectrochemical(PEC)water splitting.NiFe‐LDH nanoparticles,which can improve light‐absorption capacities and facilitate efficient hole transfer to the surface,were deposited on the surface of the BiVO4 photoanode by a hydrothermal method.All the samples were characterized using X‐ray diffraction,scanning electron microscopy,and diffuse‐reflectance spectroscopy.Linear sweep voltammetry and current‐time plots were used to investigate the PEC activity.The photocurrent response of NiFe‐LDH/BiVO4 at 1.23 V vs the reversible hydrogen electrode was higher than those of Ni(OH)2/BiVO4,Fe(OH)2/BiVO4 and pure BiVO4 electrodes under visible‐light illumination.NiFe‐LDH/BiVO4 also gave a superior PEC hydrogen evolution performance.Furthermore,the stability of the NiFe‐LDH/BiVO4 photoanode was excellent compared with that of the bare BiVO4 photoanode,and offers a novel method for solar‐assisted water splitting. 展开更多
关键词 NiFe layered double‐hydroxide nanoparticles bivo4 photoanode Photoelectrochemical water splitting Photoelectrocatalysis
下载PDF
BiVO_4 Photoanode with Exposed(040) Facets for Enhanced Photoelectrochemical Performance
2
作者 Ligang Xia Jinhua Li +3 位作者 Jing Bai Linsen Li Shuai Chen Baoxue Zhou 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期95-104,共10页
A BiVO_4 photoanode with exposed(040) facets was prepared to enhance its photoelectrochemical performance.The exposure of the(040) crystal planes of the BiVO_4 film was induced by adding NaCl to the precursor solution... A BiVO_4 photoanode with exposed(040) facets was prepared to enhance its photoelectrochemical performance.The exposure of the(040) crystal planes of the BiVO_4 film was induced by adding NaCl to the precursor solution. The asprepared BiVO_4 photoanode exhibits higher solar-light absorption and charge-separation efficiency compared to those of an anode prepared without adding Na Cl. To our knowledge,the photocurrent density(1.26 m A cm^(-2) at 1.23 V vs. RHE) of as-prepared BiVO_4 photoanode is the highest according to the reports for bare BiVO_4 films under simulated AM1.5 G solar light, and the incident photon-to-current conversion efficiency is above 35% at 400 nm. The photoelectrochemical(PEC)water-splitting performance was also dramatically improvedwith a hydrogen evolution rate of 9.11 lmol cm^(-2) h^(-1), which is five times compared with the BiVO_4 photoanode prepared without NaCl(1.82 lmol cm^(-2) h^(-1)). Intensity-modulated photocurrent spectroscopy and transient photocurrent measurements show a higher charge-carrier-transfer rate for this photoanode. These results demonstrate a promising approach for the development of high-performance BiVO_4 photoanodes which can be used for efficient PEC water splitting and degradation of organic pollutants. 展开更多
关键词 bivo4 photoanode PHOTOELECTROCHEMICAL Water splitting Organic pollutant degradation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部