借助于电化学沉积的方法,在氧化铝纳米孔内生长Bi2Te3材料,从而形成温差电纳米线阵列.利用SEM, XRD and TEM分析手段对制备的纳米线形貌和结构进行了分析,测量了纳米线的组成和温差电性能.p型和n型 Bi2Te3纳米线材料的Seebeck系数经...借助于电化学沉积的方法,在氧化铝纳米孔内生长Bi2Te3材料,从而形成温差电纳米线阵列.利用SEM, XRD and TEM分析手段对制备的纳米线形貌和结构进行了分析,测量了纳米线的组成和温差电性能.p型和n型 Bi2Te3纳米线材料的Seebeck系数经过测量分别为260μv/K和-188μV/K(307 K),比同类的块状温差电材料性能高.同时研究了沉积电位对氧化铝模板中纳米孔的填充率的影响,并对纳米线阵列的电阻进行了测量.尝试了利用n型和p型Bi2Te3纳米线阵列制备一种新型的微型温差发电器.展开更多
本文报道用分子束外延(Molecular Beam Epitaxy:MBE)技术制备了优良的铬(Cr)掺杂硒化铋(Cr-Bi_(2)Se_(3))薄膜样品。通过反射高能电子衍射(Reflective High Energy Electron Diffraction:RHEED)、X射线衍射(X-ray diffraction:XRD)技术...本文报道用分子束外延(Molecular Beam Epitaxy:MBE)技术制备了优良的铬(Cr)掺杂硒化铋(Cr-Bi_(2)Se_(3))薄膜样品。通过反射高能电子衍射(Reflective High Energy Electron Diffraction:RHEED)、X射线衍射(X-ray diffraction:XRD)技术和电磁输运系统对Cr-Bi_(2)Se_(3)进行测试。实验结果显示:较低的生长温度下Cr进入Bi_(2)Se_(3)中替代Bi位形成Cr Bi;较高的生长温度下Cr进入Bi_(2)Se_(3)中的范德瓦尔斯间隙形成层间(Interlayer)CrI,这一区别导致Cr-Bi_(2)Se_(3)在生长速率及磁性等方面表现出不同的性质。所以可以通过控制生长温度来调制Cr的掺杂位置,得到更理想的效果。展开更多
基金Supported by the National Natural Science Foundation of China(11304092,51371079,11305056,11304299,51602099)the Open Foundation of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy(HBSKFZD2014001,HBSKFM2014006,HBSKFM2014013,HBSKFM2014015)
基金National Technology Research and Development Program (863,206649AA03Z322)National Natural Science Foundation of China (50772005)Beijing Science and Technology Thematic Program (Z08000303220808)
文摘本文报道用分子束外延(Molecular Beam Epitaxy:MBE)技术制备了优良的铬(Cr)掺杂硒化铋(Cr-Bi_(2)Se_(3))薄膜样品。通过反射高能电子衍射(Reflective High Energy Electron Diffraction:RHEED)、X射线衍射(X-ray diffraction:XRD)技术和电磁输运系统对Cr-Bi_(2)Se_(3)进行测试。实验结果显示:较低的生长温度下Cr进入Bi_(2)Se_(3)中替代Bi位形成Cr Bi;较高的生长温度下Cr进入Bi_(2)Se_(3)中的范德瓦尔斯间隙形成层间(Interlayer)CrI,这一区别导致Cr-Bi_(2)Se_(3)在生长速率及磁性等方面表现出不同的性质。所以可以通过控制生长温度来调制Cr的掺杂位置,得到更理想的效果。