期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
A Deep Learning Method for Bias Correction of ECMWF 24–240 h Forecasts 被引量:15
1
作者 Lei HAN Mingxuan CHEN +5 位作者 Kangkai CHEN Haonan CHEN Yanbiao ZHANG Bing LU Linye SONG Rui QIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第9期1444-1459,共16页
Correcting the forecast bias of numerical weather prediction models is important for severe weather warnings.The refined grid forecast requires direct correction on gridded forecast products,as opposed to correcting f... Correcting the forecast bias of numerical weather prediction models is important for severe weather warnings.The refined grid forecast requires direct correction on gridded forecast products,as opposed to correcting forecast data only at individual weather stations.In this study,a deep learning method called CU-net is proposed to correct the gridded forecasts of four weather variables from the European Centre for Medium-Range Weather Forecast Integrated Forecasting System global model(ECMWF-IFS): 2-m temperature,2-m relative humidity,10-m wind speed,and 10-m wind direction,with a forecast lead time of 24 h to 240 h in North China.First,the forecast correction problem is transformed into an image-toimage translation problem in deep learning under the CU-net architecture,which is based on convolutional neural networks.Second,the ECMWF-IFS forecasts and ECMWF reanalysis data(ERA5) from 2005 to 2018 are used as training,validation,and testing datasets.The predictors and labels(ground truth) of the model are created using the ECMWF-IFS and ERA5,respectively.Finally,the correction performance of CU-net is compared with a conventional method,anomaly numerical correction with observations(ANO).Results show that forecasts from CU-net have lower root mean square error,bias,mean absolute error,and higher correlation coefficient than those from ANO for all forecast lead times from 24 h to 240 h.CU-net improves upon the ECMWF-IFS forecast for all four weather variables in terms of the above evaluation metrics,whereas ANO improves upon ECMWF-IFS performance only for 2-m temperature and relative humidity.For the correction of the 10-m wind direction forecast,which is often difficult to achieve,CU-net also improves the correction performance. 展开更多
关键词 numerical weather prediction bias correction deep learning ECMWF
下载PDF
Bias correction of sea surface temperature retrospective forecasts in the South China Sea 被引量:2
2
作者 Guijun Han Jianfeng Zhou +7 位作者 Qi Shao Wei Li Chaoliang Li Xiaobo Wu Lige Cao Haowen Wu Yundong Li Gongfu Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第2期41-50,共10页
Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have bee... Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data. 展开更多
关键词 sea surface temperature retrospective forecasts bias correction backpropagation neural network empirical orthogonal function analysis South China Sea
下载PDF
The role of bias correction on subseasonal prediction of Arctic sea ice during summer 2018 被引量:1
3
作者 Jiechen Zhao Qi Shu +3 位作者 Chunhua Li Xingren Wu Zhenya Song Fangli Qiao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第9期50-59,共10页
Subseasonal Arctic sea ice prediction is highly needed for practical services including icebreakers and commercial ships,while limited by the capability of climate models.A bias correction methodology in this study wa... Subseasonal Arctic sea ice prediction is highly needed for practical services including icebreakers and commercial ships,while limited by the capability of climate models.A bias correction methodology in this study was proposed and performed on raw products from two climate models,the First Institute Oceanography Earth System Model(FIOESM)and the National Centers for Environmental Prediction(NCEP)Climate Forecast System(CFS),to improve 60 days predictions for Arctic sea ice.Both models were initialized on July 1,August 1,and September 1 in 2018.A 60-day forecast was conducted as a part of the official sea ice service,especially for the ninth Chinese National Arctic Research Expedition(CHINARE)and the China Ocean Shipping(Group)Company(COSCO)Northeast Passage voyages during the summer of 2018.The results indicated that raw products from FIOESM underestimated sea ice concentration(SIC)overall,with a mean bias of SIC up to 30%.Bias correction resulted in a 27%improvement in the Root Mean Square Error(RMSE)of SIC and a 10%improvement in the Integrated Ice Edge Error(IIEE)of sea ice edge(SIE).For the CFS,the SIE overestimation in the marginal ice zone was the dominant features of raw products.Bias correction provided a 7%reduction in the RMSE of SIC and a 17%reduction in the IIEE of SIE.In terms of sea ice extent,FIOESM projected a reasonable minimum time and amount in mid-September;however,CFS failed to project both.Additional comparison with subseasonal to seasonal(S2S)models suggested that the bias correction methodology used in this study was more effective when predictions had larger biases. 展开更多
关键词 bias correction Arctic sea ice subseasonal prediction operational service
下载PDF
Bias Correction and Ensemble Projections of Temperature Changes over Ten Subregions in CORDEX East Asia
4
作者 Chenwei SHEN Qingyun DUAN +4 位作者 Chiyuan MIAO Chang XING Xuewei FAN Yi WU Jingya HAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第11期1191-1210,共20页
Regional climate models(RCMs)participating in the Coordinated Regional Downscaling Experiment(CORDEX)have been widely used for providing detailed climate change information for specific regions under different emissio... Regional climate models(RCMs)participating in the Coordinated Regional Downscaling Experiment(CORDEX)have been widely used for providing detailed climate change information for specific regions under different emissions scenarios.This study assesses the effects of three common bias correction methods and two multi-model averaging methods in calibrating historical(1980−2005)temperature simulations over East Asia.Future(2006−49)temperature trends under the Representative Concentration Pathway(RCP)4.5 and 8.5 scenarios are projected based on the optimal bias correction and ensemble averaging method.Results show the following:(1)The driving global climate model and RCMs can capture the spatial pattern of annual average temperature but with cold biases over most regions,especially in the Tibetan Plateau region.(2)All bias correction methods can significantly reduce the simulation biases.The quantile mapping method outperforms other bias correction methods in all RCMs,with a maximum relative decrease in root-mean-square error for five RCMs reaching 59.8%(HadGEM3-RA),63.2%(MM5),51.3%(RegCM),80.7%(YSU-RCM)and 62.0%(WRF).(3)The Bayesian model averaging(BMA)method outperforms the simple multi-model averaging(SMA)method in narrowing the uncertainty of bias-corrected results.For the spatial correlation coefficient,the improvement rate of the BMA method ranges from 2%to 31%over the 10 subregions,when compared with individual RCMs.(4)For temperature projections,the warming is significant,ranging from 1.2°C to 3.5°C across the whole domain under the RCP8.5 scenario.(5)The quantile mapping method reduces the uncertainty over all subregions by between 66%and 94%. 展开更多
关键词 CORDEX-EA bias correction BMA temperature projection
下载PDF
The Application of a Meteo-hydrological Forecasting System with Rainfall Bias Correction in a Small and Medium-sized Catchment
5
作者 高玉芳 吴雨晴 +3 位作者 陈耀登 喻伟 顾天威 武雅珍 《Journal of Tropical Meteorology》 SCIE 2022年第2期154-168,共15页
Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and dis... Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast.The quality of rainfall data in terms of both intensity and distribution is very important for establishing a reliable meteo-hydrological forecasting model.To improve the accuracy of rainfall data,the successive correction method is introduced to correct the bias of rainfall,and a meteo-hydrological forecasting model based on WRF and WRF-Hydro is applied for streamflow forecast over the Zhanghe River catchment in China.The performance of WRF rainfall is compared with the China Meteorological Administration Multi-source Precipitation Analysis System(CMPAS),and the simulated streamflow from the model is further studied.It shows that the corrected WRF rainfall is more similar to the CMPAS in both temporal and spatial distribution than the original WRF rainfall.By contrast,the statistical metrics of the corrected WRF rainfall are better.When the corrected WRF rainfall is used to drive the WRF-Hydro model,the simulated streamflow of most events is significantly improved in both hydrographs and volume than that of using the original WRF rainfall.Among the studied events,the largest improvement of the NSE is from-0.68 to 0.67.It proves that correcting the bias of WRF rainfall with the successive correction method can greatly improve the performance of streamflow forecast.In general,the WRF/WRF-Hydro meteo-hydrological forecasting model based on the successive correction method has the potential to provide better streamflow forecast in the Zhanghe River catchment. 展开更多
关键词 streamflow forecast bias correction meteo-hydrological forecasting model WRF WRF-Hydro
下载PDF
Bias Correction of Channel Brightness Temperature of FY-4A Hyperspectral GIIRS Based on Machine Learning
6
作者 Gen WANG Jiao CHEN Yue WANG 《Meteorological and Environmental Research》 CAS 2022年第1期26-30,共5页
Data assimilation algorithm depends on the basic assumption of unbiased observation error,so bias correction is one of the important steps in satellite data processing.In this paper,using the geostationary interferome... Data assimilation algorithm depends on the basic assumption of unbiased observation error,so bias correction is one of the important steps in satellite data processing.In this paper,using the geostationary interferometric infrared sounder(GIIRS)of FengYun-4 A(FY-4 A)observation and simulated brightness temperature based on background field,the brightness temperature bias correction of GIIRS channel is carried out based on random forest(RF)and extreme gradient boosting(XGBoost)machine learning.Based on the case data of Typhoon"Haishen",the correction effect of machine learning method is compared with Harris and Kelly’s"off-line"method,and the importance of different predictors to the bias correction is further discussed.The experimental results show that the systematic bias is effectively corrected,and the following conclusions are obtained:the correction effect is improved by adding geographic information(longitude and latitude)into the predictors;under the given combination of predictors,the correction effect of XGBoost is the best,followed by random forest,and finally offline method,but the three methods can correct the bias effectively;compared with long wave data of FY-4 A/GIIRS,machine learning may be more feasible for medium wave data bias correction. 展开更多
关键词 FY-4A Hyperspectral GIIRS bias correction Random forest Extreme gradient boosting
下载PDF
Bias Correction Technique for Estimating Quantiles of Finite Populations under Simple Random Sampling without Replacement
7
作者 Nicholas Makumi Romanus Odhiambo Otieno +2 位作者 George Otieno Orwa Festus Were Habineza Alexis 《Open Journal of Statistics》 2021年第5期854-869,共16页
In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function... In this paper, the problem of nonparametric estimation of finite population quantile function using multiplicative bias correction technique is considered. A robust estimator of the finite population quantile function based on multiplicative bias correction is derived with the aid of a super population model. Most studies have concentrated on kernel smoothers in the estimation of regression functions. This technique has also been applied to various methods of non-parametric estimation of the finite population quantile already under review. A major problem with the use of nonparametric kernel-based regression over a finite interval, such as the estimation of finite population quantities, is bias at boundary points. By correcting the boundary problems associated with previous model-based estimators, the multiplicative bias corrected estimator produced better results in estimating the finite population quantile function. Furthermore, the asymptotic behavior of the proposed estimators </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> presented</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It is observed that the estimator is asymptotically unbiased and statistically consistent when certain conditions are satisfied. The simulation results show that the suggested estimator is quite well in terms of relative bias, mean squared error, and relative root mean error. As a result, the multiplicative bias corrected estimator is strongly suggested for survey sampling estimation of the finite population quantile function. 展开更多
关键词 Quantile Function Kernel Estimator Multiplicative bias correction Technique Simple Random Sampling without Replacement
下载PDF
Fractional order distance regularized level set method with bias correction
8
作者 Cai Xiumei He Ningning +2 位作者 Wu Chengmao Liu Xiao Liu Hang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第1期64-82,共19页
The existing level set segmentation methods have drawbacks such as poor convergence,poor noise resistance,and long iteration times.In this paper,a fractional order distance regularized level set segmentation method wi... The existing level set segmentation methods have drawbacks such as poor convergence,poor noise resistance,and long iteration times.In this paper,a fractional order distance regularized level set segmentation method with bias correction is proposed.This method firstly introduces fractional order distance regularized term to punish the deviation between the level set function(LSF)and the signed distance function.Secondly a series of covering template is constructed to calculate fractional derivative and its conjugate of image pixel.Thirdly introducing the offset correction term and fully using the local clustering property of image intensity,the local clustering criterion of image intensity is defined and integrated with the neighborhood center to obtain the global criterion of image segmentation.Finally,the fractional distance regularization,offset correction,and external energy constraints are combined,and the energy optimization segmentation method for noisy image is established by level set.Experimental results show that the proposed method can accurately segment the image,and effectively improve the efficiency and robustness of exiting state of the art level set related algorithms. 展开更多
关键词 image segmentation fractional order distance regularization level set function fractional derivative bias correction
原文传递
Assessing the Performance of a Dynamical Downscaling Simulation Driven by a Bias-Corrected CMIP6 Dataset for Asian Climate
9
作者 Zhongfeng XU Ying HAN +4 位作者 Meng-Zhuo ZHANG Chi-Yung TAM Zong-Liang YANG Ahmed M.EL KENAWY Congbin FU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期974-988,共15页
In this study,we aim to assess dynamical downscaling simulations by utilizing a novel bias-corrected global climate model(GCM)data to drive a regional climate model(RCM)over the Asia-western North Pacific region.Three... In this study,we aim to assess dynamical downscaling simulations by utilizing a novel bias-corrected global climate model(GCM)data to drive a regional climate model(RCM)over the Asia-western North Pacific region.Three simulations were conducted with a 25-km grid spacing for the period 1980–2014.The first simulation(WRF_ERA5)was driven by the European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5)dataset and served as the validation dataset.The original GCM dataset(MPI-ESM1-2-HR model)was used to drive the second simulation(WRF_GCM),while the third simulation(WRF_GCMbc)was driven by the bias-corrected GCM dataset.The bias-corrected GCM data has an ERA5-based mean and interannual variance and long-term trends derived from the ensemble mean of 18 CMIP6 models.Results demonstrate that the WRF_GCMbc significantly reduced the root-mean-square errors(RMSEs)of the climatological mean of downscaled variables,including temperature,precipitation,snow,wind,relative humidity,and planetary boundary layer height by 50%–90%compared to the WRF_GCM.Similarly,the RMSEs of interannual-tointerdecadal variances of downscaled variables were reduced by 30%–60%.Furthermore,the WRF_GCMbc better captured the annual cycle of the monsoon circulation and intraseasonal and day-to-day variabilities.The leading empirical orthogonal function(EOF)shows a monopole precipitation mode in the WRF_GCM.In contrast,the WRF_GCMbc successfully reproduced the observed tri-pole mode of summer precipitation over eastern China.This improvement could be attributed to a better-simulated location of the western North Pacific subtropical high in the WRF_GCMbc after GCM bias correction. 展开更多
关键词 bias correction multi-model ensemble mean dynamical downscaling interannual variability day-to-day variability validation
下载PDF
Evaluation of Precipitation Datasets from TRMM Satellite and Down-scaled Reanalysis Products with Bias-correction in Middle Qilian Mountain,China
10
作者 ZHANG Lanhui HE Chansheng +1 位作者 TIAN Wei ZHU Yi 《Chinese Geographical Science》 SCIE CSCD 2021年第3期474-490,共17页
Accurate estimates of precipitation are fundamental for hydrometeorological and ecohydrological studies,but are more difficult in high mountainous areas because of the high elevation and complex terrain.This study com... Accurate estimates of precipitation are fundamental for hydrometeorological and ecohydrological studies,but are more difficult in high mountainous areas because of the high elevation and complex terrain.This study compares and evaluates two kinds of precipitation datasets,the reanalysis product downscaled by the Weather Research and Forecasting(WRF)output,and the satellite product,the Tropical Rainfall Measuring Mission(TRMM)Multisatellite Precipitation Analysis(TMPA)product,as well as their bias-corrected datasets in the Middle Qilian Mountain in Northwest China.Results show that the WRF output with finer resolution perfonns well in both estimating precipitation and hydrological simulation,while the TMPA product is unreliable in high mountainous areas.Moreover,bias-corrected WRF output also performs better than bias-corrected TMPA product.Combined with the previous studies,atmospheric reanalysis datasets are more suitable than the satellite products in high mountainous areas.Climate is more important than altitude for the\falseAlarms'events of the TRMM product.Designed to focus on the tropical areas,the TMPA product mistakes certain meteorological situations for precipitation in subhumid and semiarid areas,thus causing significant"falseAlarms"events and leading to significant overestimations and unreliable performance.Simple linear bias correction method,only removing systematical errors,can significantly improves the accuracy of both the WRF output and the TMPA product in arid high mountainous areas with data scarcity.Evaluated by hydrological simulations,the bias-corrected WRF output is more reliable than the gauge dataset.Thus,data merging of the WRF output and gauge observations would provide more reliable precipitation estimations in arid high mountainous areas. 展开更多
关键词 EVALUATION Weather Research and Forecasting(WRF) Tropical Rainfall Measuring Mission(TRMM) precipitation bias correction high mountainous areas
下载PDF
System bias correction of short-term hub-height wind forecasts using the Kalman filter
11
作者 Jingjing Xu Ziniu Xiao +1 位作者 Zhaohui Lin Ming Li 《Protection and Control of Modern Power Systems》 2021年第1期473-481,共9页
Wind energy is a fluctuating source for power systems, which poses challenges to grid planning for the wind power industry. To improve the short-term wind forecasts at turbine height, the bias correction approach Kalm... Wind energy is a fluctuating source for power systems, which poses challenges to grid planning for the wind power industry. To improve the short-term wind forecasts at turbine height, the bias correction approach Kalman filter (KF) is applied to 72-h wind speed forecasts from the WRF model in Zhangbei wind farm for a period over two years. The KF approach shows a remarkable ability in improving the raw forecasts by decreasing the root-mean-square error by 16% from 3.58 to 3.01 m s−1, the mean absolute error by 14% from 2.71 to 2.34 m s−1, the bias from 0.22 to − 0.19 m s−1, and improving the correlation from 0.58 to 0.66. The KF significantly reduces random errors of the model, showing the capability to deal with the forecast errors associated with physical processes which cannot be accurately handled by the numerical model. In addition, the improvement of the bias correction is larger for wind speeds sensitive to wind power generation. So the KF approach is suitable for short-term wind power prediction. 展开更多
关键词 Wind forecasts Wind energy Numerical model bias correction Kalman filter Atmospheric boundary layer
原文传递
Scientific Advances and Weather Services of the China Meteorological Administration’s National Forecasting Systems during the Beijing 2022 Winter Olympics
12
作者 Guo DENG Xueshun SHEN +23 位作者 Jun DU Jiandong GONG Hua TONG Liantang DENG Zhifang XU Jing CHEN Jian SUN Yong WANG Jiangkai HU Jianjie WANG Mingxuan CHEN Huiling YUAN Yutao ZHANG Hongqi LI Yuanzhe WANG Li GAO Li SHENG Da LI Li LI Hao WANG Ying ZHAO Yinglin LI Zhili LIU Wenhua GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期767-776,共10页
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational... Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems. 展开更多
关键词 Beijing Winter Olympic Games CMA national forecasting system data assimilation ensemble forecast bias correction and downscaling machine learning-based fusion methods
下载PDF
Rainfall Variability under Present and Future Climate Scenarios Using the Rossby Center Bias-Corrected Regional Climate Model
13
作者 Jane Wangui Mugo Franklin J. Opijah +2 位作者 Joshua Ngaina Faith Karanja Mary Mburu 《American Journal of Climate Change》 2020年第3期243-265,共23页
<p align="justify"> <span style="font-family:Verdana;">This study sought to determine the spatial and temporal variability of rainfall under past and future climate scenarios. The data ... <p align="justify"> <span style="font-family:Verdana;">This study sought to determine the spatial and temporal variability of rainfall under past and future climate scenarios. The data used comprised station-based monthly gridded rainfall data sourced from the Climate Research </span><span style="font-family:Verdana;">Unit (CRU) and monthly model outputs from the Fourth Edition of the Rossby Centre (RCA4) Regional Climate Model (RCM), which has scaled-down </span><span style="font-family:Verdana;">nine GCMs for Africa. Although the 9 Global Climate Models (GCMs) downscaled by the RCA4 model was not very good at simulating rainfall in Kenya, the ensemble of the 9 models performed better and could be used for further studies. The ensemble of the models was thus bias-corrected using the scaling method to reduce the error;lower values of bias and Normalized Root Mean Square Error (NRMSE) w</span></span><span style="font-family:Verdana;">ere</span><span style="font-family:'Minion Pro Capt','serif';"><span style="font-family:Verdana;"> recorded when compared to the uncorrected models. The bias-corrected ensemble was used to study the spatial and temporal behaviour of rainfall under baseline (1971 to 2000) and future RCP 4.5 and 8.5 scenarios (2021 to 2050). An insignificant trend was noted under the </span><span style="font-family:Verdana;">baseline condition during the March-May (MAM) and October-December</span> <span style="font-family:Verdana;">(OND) rainfall seasons. A positive significant trend at 5% level was noted</span><span style="font-family:Verdana;"> under RCP 4.5 and 8.5 scenarios in some stations during both MAM and OND seasons. The increase in rainfall was attributed to global warming due to increased anthropogenic emissions of greenhouse gases. Results on the spatial variability of rainfall indicate the spatial extent of rainfall will increase under both RCP 4.5 and RCP 8.5 scenario when compared to the baseline;the increase is higher under the RCP 8.5 scenario. Overall rainfall was found to be highly variable in space and time, there is a need to invest in the early dissemination of weather forecasts to help farmers adequately prepare in case of unfavorable weather. Concerning the expected increase in rainfall in the future, policymakers need to consider the results of this study while preparing mitigation strategies against the effects of changing rainfall patterns.</span></span> </p> 展开更多
关键词 CORDEX Climate Change bias correction ENSEMBLE RAINFALL Kenya RCA4
下载PDF
Hydrological response under CMIP6 climate projection in Astore River Basin,Pakistan
14
作者 Zeshan ALI Mudassar IQBAL +4 位作者 Ihsan Ullah KHAN Muhammad Umer MASOOD Muhammad UMER Muhammad Usama Khan LODHI Muhammad Atiq Ur Rehman TARIQ 《Journal of Mountain Science》 SCIE CSCD 2023年第8期2263-2281,共19页
Climate change strongly influences the available water resources in a watershed due to direct linkage of atmospheric driving forces and changes in watershed hydrological processes.Understanding how these climatic chan... Climate change strongly influences the available water resources in a watershed due to direct linkage of atmospheric driving forces and changes in watershed hydrological processes.Understanding how these climatic changes affect watershed hydrology is essential for human society and environmental processes.Coupled Model Intercomparison Project phase 6(CMIP6)dataset of three GCM's(BCC-CSM2-MR,INM-CM5-0,and MPIESM1-2-HR)with resolution of 100 km has been analyzed to examine the projected changes in temperature and precipitation over the Astore catchment during 2020-2070.Bias correction method was used to reduce errors.In this study,statistical significance of trends was performed by using the Man-Kendall test.Sen's estimator determined the magnitude of the trend on both seasonal and annual scales at Rama Rattu and Astore stations.MPI-ESM1-2-HR showed better results with coefficient of determination(COD)ranging from 0.70-0.74 for precipitation and 0.90-0.92 for maximum and minimum temperature at Astore,Rama,and Rattu followed by INM-CM5-0 and BCC-CSM2-MR.University of British Columbia Watershed model was used to attain the future hydrological series and to analyze the hydrological response of Astore River Basin to climate change.Results revealed that by the end of the 2070s,average annual precipitation is projected to increase up to 26.55%under the SSP1-2.6,6.91%under SSP2-4.5,and decrease up to 21.62%under the SSP5-8.5.Precipitation also showed considerable variability during summer and winter.The projected temperature showed an increasing trend that may cause melting of glaciers.The projected increase in temperature ranges from-0.66℃ to 0.50℃,0.9℃ to 1.5℃ and 1.18℃ to 2℃ under the scenarios of SSP1-2.6,SSP2-4.5 and SSP5-8.5,respectively.Simulated streamflows presented a slight increase by all scenarios.Maximum streamflow was generated under SSP5-8.5 followed by SSP2-4.5 and SSP1-2.6.The snowmelt and groundwater contributions to streamflow have decreased whereas rainfall and glacier melt components have increased on the other hand.The projected streamflows(2020-2070)compared to the control period(1990-2014)showed a reduction of 3%-11%,2%-9%,and 1%-7%by SSP1-2.6,SSP2-4.5,and SSP5-8.5,respectively.The results revealed detailed insights into the performance of three GCMs,which can serve as a blueprint for regional policymaking and be expanded upon to establish adaption measures. 展开更多
关键词 GCMS UBCWM Astore River Climate Change Upper Indus Basin bias correction
下载PDF
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collector inductively coupled plasma mass spectrometry 被引量:1
15
作者 Hongmei Gong Pengyuan Guo +4 位作者 Shuo Chen Meng Duan Pu Sun Xiaohong Wang Yaoling Niu 《Acta Geochimica》 EI CAS CSCD 2020年第3期355-364,共10页
Element doping has been proved to be a useful method to correct for the mass bias fractionation when analyzing iron isotope compositions.We present a systematic re-assessment on how the doped nickel may affect the iro... Element doping has been proved to be a useful method to correct for the mass bias fractionation when analyzing iron isotope compositions.We present a systematic re-assessment on how the doped nickel may affect the iron isotope analysis in this study by carrying out several experiments.We find three important factors that can affect the analytical results,including the Ni:Fe ratio in the analyte solutions,the match of the Ni:Fe ratio between the unknown sample and standard solutions,and the match of the Fe concentration between the sample and standard solutions.Thus,caution is required when adding Ni to the analyte Fe solutions before analysis.Using our method,theδ56Fe and δ57Fe values of the USGS standards W-2 a,BHVO-2,BCR-2,AGV-2 and GSP-2 are consistent with the recommended literature values,and the long-term(one year) external reproducibility is better than 0.03 and 0.05‰(2 SD) for δ56Fe and δ57Fe,respectively.Therefore,the analytical method established in our laboratory is a method of choice for high quantity Fe isotope data in geological materials. 展开更多
关键词 Fe isotope Ni-doping Stable isotope Precision and accuracy Mass bias correction Pseudohigh mass resolution
下载PDF
Projection of hydrothermal condition in Central Asia under four SSP-RCP scenarios 被引量:1
16
作者 YAO Linlin ZHOU Hongfei +2 位作者 YAN Yingjie LI Lanhai SU Yuan 《Journal of Arid Land》 SCIE CSCD 2022年第5期521-536,共16页
Hydrothermal condition is mismatched in arid and semi-arid regions,particularly in Central Asia(including Kazakhstan,Kyrgyzstan,Tajikistan,Uzbekistan,and Turkmenistan),resulting many environmental limitations.In this ... Hydrothermal condition is mismatched in arid and semi-arid regions,particularly in Central Asia(including Kazakhstan,Kyrgyzstan,Tajikistan,Uzbekistan,and Turkmenistan),resulting many environmental limitations.In this study,we projected hydrothermal condition in Central Asia based on bias-corrected multi-model ensembles(MMEs)from the Coupled Model Intercomparison Project Phase 6(CMIP6)under four Shared Socioeconomic Pathway and Representative Concentration Pathway(SSP-RCP)scenarios(SSP126(SSP1-RCP2.6),SSP245(SSP2-RCP4.5),SSP460(SSP4-RCP6.0),and SSP585(SSP5-RCP8.5))during 2015-2100.The bias correction and spatial disaggregation,water-thermal product index,and sensitivity analysis were used in this study.The results showed that the hydrothermal condition is mismatched in the central and southern deserts,whereas the region of Pamir Mountains and Tianshan Mountains as well as the northern plains of Kazakhstan showed a matched hydrothermal condition.Compared with the historical period,the matched degree of hydrothermal condition improves during 2046-2075,but degenerates during 2015-2044 and 2076-2100.The change of hydrothermal condition is sensitive to precipitation in the northern regions and the maximum temperatures in the southern regions.The result suggests that the optimal scenario in Central Asia is SSP126 scenario,while SSP585 scenario brings further hydrothermal contradictions.This study provides scientific information for the development and sustainable utilization of hydrothermal resources in arid and semi-arid regions under climate change. 展开更多
关键词 hydrothermal condition water-thermal product index bias correction and spatial disaggregation SSP-RCP scenarios Central Asia
下载PDF
What explains the technical efficiency of banks in Tunisia?Evidence from a two‑stage data envelopment analysis 被引量:1
17
作者 Mohamed Mehdi Jelassi Ezzeddine Delhoumi 《Financial Innovation》 2021年第1期1431-1456,共26页
In this study we examine the potential determinants of technical efficiency for the Tunisian commercial banking sector over the period of 1995–2017.First,we estimate banking technical efficiency with a radial and non... In this study we examine the potential determinants of technical efficiency for the Tunisian commercial banking sector over the period of 1995–2017.First,we estimate banking technical efficiency with a radial and non-radial bootstrap data envelopment analysis.For the radial technique,we use an input-oriented approach and for non-radial we use the Range Adjusted Measure(RAM).Second,we use a double bootstrapping regression technique to estimate the influence of a set of eventual determinants on technical efficiency.Finally,based on all possible regressions,we gauge the overall effect of each determinant.Our results reveal that the input-oriented and RAM approach gave somewhat similar results.We found that the return on equity,the expense to income ratio,the loan to deposit ratio,and the growth rate are insignificant to Tunisian banking technical efficiency.In particular,banking technical efficiency increases with capitalization and inflation,whereas,it decreases with size,number of bank branches,management to staff ratio,and loan to asset ratio.In addition,we identified evidence supporting the moderate success of the last decade of reforms and a noticeable one for the post-revolution reforms in helping improve banking technical efficiency.The post-revolution reforms,largely revolving around reinforcing the rules of good governance and banking supervision,coupled with the restructuring of public banks,were found to be insufficient to raise overall banking technical efficiency despite improvement in the technical efficiency of private banks. 展开更多
关键词 Tunisian banks Financial intermediation Technical efficiency Data envelopment analysis BOOTSTRAP bias correction Truncated regression
下载PDF
Titanium Isotope Analysis of Igneous Reference Materials using a Double-spike MC-ICP-MS Method
18
作者 LI Jin TANG Suohan +2 位作者 ZHU Xiangkun MA Jianxiong ZHAO Xinmiao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第2期517-524,共8页
Ti separation was achieved by ion-exchange chromatography using Bio-Rad AG 1-X8 anion-exchange and DGA resins.For high-Fe/Ti and high-Mg/Ti igneous samples,a three-column procedure was required,whereas a two-column pr... Ti separation was achieved by ion-exchange chromatography using Bio-Rad AG 1-X8 anion-exchange and DGA resins.For high-Fe/Ti and high-Mg/Ti igneous samples,a three-column procedure was required,whereas a two-column procedure was used for low-Fe/Ti and low-Mg/Ti igneous samples.The Ti isotopes were analysed by MC-ICP-MS,and instrumental mass bias was corrected using a ^(47)Ti-^(49)Ti double-spike technique.The ^(47)Ti-^(49)Ti double-spike and SRM 3162a were calibrated using SRM 979-Cr,certificated value ^(53)Cr/^(52)Crt rue=0.11339.Isobaric interference was evaluated by analysing Alfa-Ti doped with Na,Mg,Ca,and Mo,and results indicate that high concentrations of Na and Mg have no significant effect on Ti isotope analyses;however,Ca and Mo interferences lead to erroneousδ^(49/47)Ti values when Ca/Ti and Mo/Ti ratios exceed 0.01 and 0.1,respectively.Titanium isotopic compositions were determined for 12 igneous reference materials,BCR-2,BHVO-2,GBW07105,AGV-1,AGV-2,W-2,GBW07123,GBW07126,GBW07127,GBW07101,JP-1,and DTS-2b.Samples yieldδ^(49/47)Ti(‰)of−0.035±0.022,−0.038±0.031,0.031±0.022,0.059±0.038,0.044±0.037,0.000±0.015,0.154±0.044,−0.044±0.018,0.010±0.022,0.064±0.043,0.169±0.034,and−0.047±0.025(relative to OL-Ti,±2SD),respectively;of which isotopic compositions of DTS-2b,JP-1,GBW07101,GBW07105,GBW07123,GBW07126,and GBW07127 are reported for the first time.Standard Alfa-Ti was analysed repeatedly over a ten-month period,indicating a reproducibility of±0.047(2SD)forδ^(49/47)Ti,similar to the precisions obtained for geochemical reference materials. 展开更多
关键词 Ti isotope double-spike mass bias correction MC-ICP-MS reference material
下载PDF
Climate change impacts on the streamflow of Zarrineh River,Iran
19
作者 Farhad YAZDANDOOST Sogol MORADIAN 《Journal of Arid Land》 SCIE CSCD 2021年第9期891-904,共14页
Zarrineh River is located in the northwest of Iran,providing more than 40%of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth.Lake Urmia is a highly endangered ecosystem on ... Zarrineh River is located in the northwest of Iran,providing more than 40%of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth.Lake Urmia is a highly endangered ecosystem on the brink of desiccation.This paper studied the impacts of climate change on the streamflow of Zarrineh River.The streamflow was simulated and projected for the period 1992-2050 through seven CMIP5(coupled model intercomparison project phase 5)data series(namely,BCC-CSM1-1,BNU-ESM,CSIRO-Mk3-6-0,GFDL-ESM2G,IPSL-CM5A-LR,MIROC-ESM and MIROC-ESM-CHEM)under RCP2.6(RCP,representative concentration pathways)and RCP8.5.The model data series were statistically downscaled and bias corrected using an artificial neural network(ANN)technique and a Gamma based quantile mapping bias correction method.The best model(CSIRO-Mk3-6-0)was chosen by the TOPSIS(technique for order of preference by similarity to ideal solution)method from seven CMIP5 models based on statistical indices.For simulation of streamflow,a rainfall-runoff model,the hydrologiska byrans vattenavdelning(HBV-Light)model,was utilized.Results on hydro-climatological changes in Zarrineh River basin showed that the mean daily precipitation is expected to decrease from 0.94 and 0.96 mm in 2015 to 0.65 and 0.68 mm in 2050 under RCP2.6 and RCP8.5,respectively.In the case of temperature,the numbers change from 12.33℃ and 12.37℃ in 2015 to 14.28℃ and 14.32℃ in 2050.Corresponding to these climate scenarios,this study projected a decrease of the annual streamflow of Zarrineh River by half from 2015 to 2050 as the results of climatic changes will lead to a decrease in the annual streamflow of Zarrineh River from 59.49 m^(3)/s in 2015 to 22.61 and 23.19 m^(3)/s in 2050.The finding is of important meaning for water resources planning purposes,management programs and strategies of the Lake's endangered ecosystem. 展开更多
关键词 climate change water resources management climate model intercomparison project phase5(CMIP5) artificial neural network(ANN) bias correction hydrologiska byrans vattenavdelning(HBV-Light) Zarrineh River
下载PDF
An Experiment on the Prediction of the Surface Wind Speed in Chongli Based on the WRF Model:Evaluation and Calibration
20
作者 Na LI Lingkun RAN +1 位作者 Dongdong SHEN Baofeng JIAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第5期845-861,共17页
In this study,the ability of the Weather Research and Forecasting(WRF)model to generate accurate near-surface wind speed forecasts at kilometer-to subkilometer-scale resolution along race tracks(RTs)in Chongli during ... In this study,the ability of the Weather Research and Forecasting(WRF)model to generate accurate near-surface wind speed forecasts at kilometer-to subkilometer-scale resolution along race tracks(RTs)in Chongli during the wintertime is evaluated.The performance of two postprocessing methods,including the decaying-averaging(DA)and analogy-based(AN)methods,is tested to calibrate the near-surface wind speed forecasts.It is found that great uncertainties exist in the model’s raw forecasts of the near-surface wind speed in Chongli.Improvement of the forecast accuracy due to refinement of the horizontal resolution from kilometer to subkilometer scale is limited and not systematic.The RT sites tend to have large bias and centered root mean square error(CRMSE)values and also exhibit notable underestimation of high-wind speeds,notable overestimation or underestimation of the near-surface wind speed at high altitudes,and notable underestimation during daytime.These problems are not resolved by increasing the horizontal resolution and are even exacerbated,which leads to great challenges in the accurate forecasting of the near-surface wind speed in the competition areas in Chongli.The application of postprocessing methods can greatly improve the forecast accuracy of near-surface wind speed.Both methods used in this study have comparable abilities in reducing the(positive or negative)bias,while the AN method is also capable of decreasing the random error reflected by CRMSE.In particular,the large biases for high-wind speeds,wind speeds at high-altitude stations,and wind speeds during the daytime at RT stations can be evidently reduced. 展开更多
关键词 near-surface wind speed forecast bias corrections complex terrain
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部