Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Pr...Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Prediction System(NOGAPS) model at 12:00 UTC from June 28 to August 10 in 2009,the bias-removed ensemble mean(BRE) was used to do the forecast test on the sea surface wind fields,and the root-mean-square error(RMSE) was used to test and evaluate the forecast results.The results showed that the BRE considerably reduced the RMSEs of 24 and 48 h sea surface wind field forecasts,and the forecast skill was superior to that of the single model forecast.The RMSE decreases in the south of central Bohai Sea and the middle of the Yellow Sea were the most obvious.In addition,the BRE forecast improved evidently the forecast skill of the gale process which occurred during July 13-14 and August 7 in 2009.The forecast accuracy of the wind speed and the gale location was also improved.展开更多
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ...Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.展开更多
It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill than deterministic(or single) forecasts. However, few studies have focused on quantifying the rel...It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill than deterministic(or single) forecasts. However, few studies have focused on quantifying the relationship between their forecast errors, especially in individual prediction cases. Clarification of the characteristics of deterministic and ensemble mean forecasts from the perspective of attractors of dynamical systems has also rarely been involved. In this paper, two attractor statistics—namely, the global and local attractor radii(GAR and LAR, respectively)—are applied to reveal the relationship between deterministic and ensemble mean forecast errors. The practical forecast experiments are implemented in a perfect model scenario with the Lorenz96 model as the numerical results for verification. The sample mean errors of deterministic and ensemble mean forecasts can be expressed by GAR and LAR, respectively, and their ratio is found to approach2^(1/2) with lead time. Meanwhile, the LAR can provide the expected ratio of the ensemble mean and deterministic forecast errors in individual cases.展开更多
In this paper we present the current capabilities for numerical weather prediction of precipitation over China using a suite of ten multimodels and our superensemble based forecasts. Our suite of models includes the o...In this paper we present the current capabilities for numerical weather prediction of precipitation over China using a suite of ten multimodels and our superensemble based forecasts. Our suite of models includes the operational suite selected by NCARs TIGGE archives for the THORPEX Program. These are: ECMWF, UKMO, JMA, NCEP, CMA, CMC, BOM, MF, KMA and the CPTEC models. The superensemble strategy includes a training and a forecasts phase, for these the periods chosen for this study include the months February through September for the years 2007 and 2008. This paper addresses precipitation forecasts for the medium range i.e. Days 1 to 3 and extending out to Day 10 of forecasts using this suite of global models. For training and forecasts validations we have made use of an advanced TRMM satellite based rainfall product. We make use of standard metrics for forecast validations that include the RMS errors, spatial correlations and the equitable threat scores. The results of skill forecasts of precipitation clearly demonstrate that it is possible to obtain higher skills for precipitation forecasts for Days 1 through 3 of forecasts from the use of the multimodel superensemble as compared to the best model of this suite. Between Days 4 to 10 it is possible to have very high skills from the multimodel superensemble for the RMS error of precipitation. Those skills are shown for a global belt and especially over China. Phenomenologically this product was also found very useful for precipitation forecasts for the Onset of the South China Sea monsoon, the life cycle of the mei-yu rains and post typhoon landfall heavy rains and flood events. The higher skills of the multimodel superensemble make it a very useful product for such real time events.展开更多
Two important questions are addressed in this paper using the Global Ensemble Forecast System (GEFS) from the National Centers for Environmental Prediction (NCEP): (1) How many ensemble members are needed to be...Two important questions are addressed in this paper using the Global Ensemble Forecast System (GEFS) from the National Centers for Environmental Prediction (NCEP): (1) How many ensemble members are needed to better represent forecast uncertainties with limited computational resources? (2) What is tile relative impact on forecast skill of increasing model resolution and ensemble size? Two-month experiments at T126L28 resolution were used to test the impact of varying the ensemble size from 5 to 80 members at the 500- hPa geopotential height. Results indicate that increasing the ensemble size leads to significant improvements in the performance for all forecast ranges when measured by probabilistic metrics, but these improvements are not significant beyond 20 members for long forecast ranges when measured by deterministic metrics. An ensemble of 20 to 30 members is the most effective configuration of ensemble sizes by quantifying the tradeoff between ensemble performance and the cost of computational resources. Two representative configurations of the GEFS the T126L28 model with 70 members and the T190L28 model with 20 members, which have equivalent computing costs--were compared. Results confirm that, for the NCEP GEFS, increasing the model resolution is more (less) beneficial than increasing the ensemble size for a short (long) forecast range.展开更多
This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for ...This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble(TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean(BREM) and superensemble(SUP), are compared with the ensemble mean(EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible.展开更多
A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the no...A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble.展开更多
In the wake of global water scarcity, forecasting of water quantity and quality, regionalization of river basins has attracted serious attention of the hydrology researchers. It has become an important area of researc...In the wake of global water scarcity, forecasting of water quantity and quality, regionalization of river basins has attracted serious attention of the hydrology researchers. It has become an important area of research to enhance the quality of prediction of yield in river basins. In this paper, we analyzed the data of Godavari basin, and regionalize it using a cluster ensemble method. Cluster Ensemble methods are commonly used to enhance the quality of clustering by combining multiple clustering schemes to produce a more robust scheme delivering similar homogeneous basins. The goal is to identify, analyse and describe hydrologically similar catchments using cluster analysis. Clustering has been done using RCDA cluster ensemble algorithm, which is based on discriminant analysis. The algorithm takes H base clustering schemes each with K clusters, obtained by any clustering method, as input and constructs discriminant function for each one of them. Subsequently, all the data tuples are predicted using H discriminant functions for cluster membership. Tuples with consistent predictions are assigned to the clusters, while tuples with inconsistent predictions are analyzed further and either assigned to clusters or declared as noise. Clustering results of RCDA algorithm have been compared with Best of k-means and Clue cluster ensemble of R software using traditional clustering quality measures. Further, domain knowledge based comparison has also been performed. All the results are encouraging and indicate better regionalization of the Godavari basin data.展开更多
Based on the dynamic framework of Lorenz 96 model,the ensemble prediction system(EPS)containing stochastic forcing has been developed.In this system,effects of stochastic forcing on the model climate state and ensembl...Based on the dynamic framework of Lorenz 96 model,the ensemble prediction system(EPS)containing stochastic forcing has been developed.In this system,effects of stochastic forcing on the model climate state and ensemble mean prediction have been studied.The results show that the climate mean and standard deviation provided by a new computing paradigm by means of introduction of the proper stochastic forcing into numerical model integration process are closer to that of the true value than that made by the non-stochastic forcing.In other words,numerical model integration process with stochastic forcing has positive effect on the model climate state,and the effect is found to be positive mainly in the long lead time.Meanwhile,with respect to ensemble forecast effect yielded by white noise stochastic forcing,most results are better than those provided by no-stochastic forcing,and improvements pertaining to white noise stochastic forcing vary non-monotonically with the increase of the size of white noise.Moreover,the effects made by the identical white noise stochastic forcing also are different in various non-linear systems.With respect to EPS effect yielded by red noise stochastic forcing,most results are better than those provided by no-stochastic forcing,but only a part of ensemble forecast effect influenced by red noise is superior to that influenced by white noise.Finally,improvements pertaining to red noise stochastic forcing vary non-symmetrically and non-monotonically with the distribution of coefficientΦ.Besides,the selection of correlation coefficientΦis also dependent on non-linear models.展开更多
Precipitation is a significant index to measure the degree of drought and flood in a region,which directly reflects the local natural changes and ecological environment.It is very important to grasp the change charact...Precipitation is a significant index to measure the degree of drought and flood in a region,which directly reflects the local natural changes and ecological environment.It is very important to grasp the change characteristics and law of precipitation accurately for effectively reducing disaster loss and maintaining the stable development of a social economy.In order to accurately predict precipitation,a new precipitation prediction model based on extreme learning machine ensemble(ELME)is proposed.The integrated model is based on the extreme learning machine(ELM)with different kernel functions and supporting parameters,and the submodel with the minimum root mean square error(RMSE)is found to fit the test data.Due to the complex mechanism and factors affecting precipitation change,the data have strong uncertainty and significant nonlinear variation characteristics.The mean generating function(MGF)is used to generate the continuation factor matrix,and the principal component analysis technique is employed to reduce the dimension of the continuation matrix,and the effective data features are extracted.Finally,the ELME prediction model is established by using the precipitation data of Liuzhou city from 1951 to 2021 in June,July and August,and a comparative experiment is carried out by using ELM,long-term and short-term memory neural network(LSTM)and back propagation neural network based on genetic algorithm(GA-BP).The experimental results show that the prediction accuracy of the proposed method is significantly higher than that of other models,and it has high stability and reliability,which provides a reliable method for precipitation prediction.展开更多
The magnitude and frequency of precipitation is of great significance in the field of hydrologic and hydraulic design and has wide applications in varied areas. However, the availability of precipitation data is limit...The magnitude and frequency of precipitation is of great significance in the field of hydrologic and hydraulic design and has wide applications in varied areas. However, the availability of precipitation data is limited to a few areas, where the rain gauges are successfully and efficiently installed. The magnitude and frequency of precipitation in ungauged sites can be assessed by grouping areas with similar characteristics. The procedure of grouping of areas having similar behaviour is termed as Regionalization. In this paper, RCDA cluster ensemble algorithm is employed to identify the homogeneous regions of rainfall in India. Cluster ensemble methods are commonly used to enhance the quality of clustering by combining multiple clustering schemes to produce a more robust scheme delivering similar homogeneous regions. The goal is to identify, analyse and describe hydrologically similar regions using RCDA cluster ensemble algorithm. RCDA cluster ensemble algorithm, which is based on discriminant analysis. The algorithm takes H base clustering schemes each with K clusters, obtained by any clustering method, as input and constructs discriminant function for each one of them. Subsequently, all the data tuples are predicted using H discriminant functions for cluster membership. Tuples with consistent predictions are assigned to the clusters, while tuples with inconsistent predictions are analyzed further and either assigned to clusters or declared as noise. RCDA algorithm has been compared with Best of K-means and Clue cluster ensemble of R software using traditional clustering quality measures. Further, domain knowledge based comparison has also been performed. All the results are encouraging and indicate better regionalization of the rainfall in different parts of India.展开更多
For a particular clustering problems, selecting the best clustering method is a challenging problem.Research suggests that integrate the multiple clustering can improve the accuracy of clustering ensemble greatly. A n...For a particular clustering problems, selecting the best clustering method is a challenging problem.Research suggests that integrate the multiple clustering can improve the accuracy of clustering ensemble greatly. A new clustering ensemble approach based on the similarities in 2-mode networks is proposed in this paper. First of all, the data object and the initial clustering clusters transform into 2-mode networks, then using the similarities in 2-mode networks to calculate the similarity between different clusters iteratively to refine the adjacency matrix, K-means algorithm is finally used to get the final clustering, then obtain the final clustering results.The method effectively use the similarity between different clusters,example shows the feasibility of this method.展开更多
基金Supported by Chinese Meteorological Administration's Special Funds(Meteorology) for Scientific Research on Public Causes( GYHY200906007)Gale Forecast Item of the Shengli Oil Field Observatory (2008001)~~
文摘Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Prediction System(NOGAPS) model at 12:00 UTC from June 28 to August 10 in 2009,the bias-removed ensemble mean(BRE) was used to do the forecast test on the sea surface wind fields,and the root-mean-square error(RMSE) was used to test and evaluate the forecast results.The results showed that the BRE considerably reduced the RMSEs of 24 and 48 h sea surface wind field forecasts,and the forecast skill was superior to that of the single model forecast.The RMSE decreases in the south of central Bohai Sea and the middle of the Yellow Sea were the most obvious.In addition,the BRE forecast improved evidently the forecast skill of the gale process which occurred during July 13-14 and August 7 in 2009.The forecast accuracy of the wind speed and the gale location was also improved.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.11574250).
文摘Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.
基金funding from the National Natural Science Foundation of China (Grant Nos. 41375110 and 41522502)
文摘It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill than deterministic(or single) forecasts. However, few studies have focused on quantifying the relationship between their forecast errors, especially in individual prediction cases. Clarification of the characteristics of deterministic and ensemble mean forecasts from the perspective of attractors of dynamical systems has also rarely been involved. In this paper, two attractor statistics—namely, the global and local attractor radii(GAR and LAR, respectively)—are applied to reveal the relationship between deterministic and ensemble mean forecast errors. The practical forecast experiments are implemented in a perfect model scenario with the Lorenz96 model as the numerical results for verification. The sample mean errors of deterministic and ensemble mean forecasts can be expressed by GAR and LAR, respectively, and their ratio is found to approach2^(1/2) with lead time. Meanwhile, the LAR can provide the expected ratio of the ensemble mean and deterministic forecast errors in individual cases.
文摘In this paper we present the current capabilities for numerical weather prediction of precipitation over China using a suite of ten multimodels and our superensemble based forecasts. Our suite of models includes the operational suite selected by NCARs TIGGE archives for the THORPEX Program. These are: ECMWF, UKMO, JMA, NCEP, CMA, CMC, BOM, MF, KMA and the CPTEC models. The superensemble strategy includes a training and a forecasts phase, for these the periods chosen for this study include the months February through September for the years 2007 and 2008. This paper addresses precipitation forecasts for the medium range i.e. Days 1 to 3 and extending out to Day 10 of forecasts using this suite of global models. For training and forecasts validations we have made use of an advanced TRMM satellite based rainfall product. We make use of standard metrics for forecast validations that include the RMS errors, spatial correlations and the equitable threat scores. The results of skill forecasts of precipitation clearly demonstrate that it is possible to obtain higher skills for precipitation forecasts for Days 1 through 3 of forecasts from the use of the multimodel superensemble as compared to the best model of this suite. Between Days 4 to 10 it is possible to have very high skills from the multimodel superensemble for the RMS error of precipitation. Those skills are shown for a global belt and especially over China. Phenomenologically this product was also found very useful for precipitation forecasts for the Onset of the South China Sea monsoon, the life cycle of the mei-yu rains and post typhoon landfall heavy rains and flood events. The higher skills of the multimodel superensemble make it a very useful product for such real time events.
文摘Two important questions are addressed in this paper using the Global Ensemble Forecast System (GEFS) from the National Centers for Environmental Prediction (NCEP): (1) How many ensemble members are needed to better represent forecast uncertainties with limited computational resources? (2) What is tile relative impact on forecast skill of increasing model resolution and ensemble size? Two-month experiments at T126L28 resolution were used to test the impact of varying the ensemble size from 5 to 80 members at the 500- hPa geopotential height. Results indicate that increasing the ensemble size leads to significant improvements in the performance for all forecast ranges when measured by probabilistic metrics, but these improvements are not significant beyond 20 members for long forecast ranges when measured by deterministic metrics. An ensemble of 20 to 30 members is the most effective configuration of ensemble sizes by quantifying the tradeoff between ensemble performance and the cost of computational resources. Two representative configurations of the GEFS the T126L28 model with 70 members and the T190L28 model with 20 members, which have equivalent computing costs--were compared. Results confirm that, for the NCEP GEFS, increasing the model resolution is more (less) beneficial than increasing the ensemble size for a short (long) forecast range.
基金Special Research Program for Public Welfare(Meteorology)of China(GYHY200906009,GYHY201006015,GYHY200906007)National Natural Science Foundation of China(4107503541475044)
文摘This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble(TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean(BREM) and superensemble(SUP), are compared with the ensemble mean(EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible.
基金supported by a project of the National Natural Science Foundation of China (Grant No. 41305099)
文摘A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble.
文摘In the wake of global water scarcity, forecasting of water quantity and quality, regionalization of river basins has attracted serious attention of the hydrology researchers. It has become an important area of research to enhance the quality of prediction of yield in river basins. In this paper, we analyzed the data of Godavari basin, and regionalize it using a cluster ensemble method. Cluster Ensemble methods are commonly used to enhance the quality of clustering by combining multiple clustering schemes to produce a more robust scheme delivering similar homogeneous basins. The goal is to identify, analyse and describe hydrologically similar catchments using cluster analysis. Clustering has been done using RCDA cluster ensemble algorithm, which is based on discriminant analysis. The algorithm takes H base clustering schemes each with K clusters, obtained by any clustering method, as input and constructs discriminant function for each one of them. Subsequently, all the data tuples are predicted using H discriminant functions for cluster membership. Tuples with consistent predictions are assigned to the clusters, while tuples with inconsistent predictions are analyzed further and either assigned to clusters or declared as noise. Clustering results of RCDA algorithm have been compared with Best of k-means and Clue cluster ensemble of R software using traditional clustering quality measures. Further, domain knowledge based comparison has also been performed. All the results are encouraging and indicate better regionalization of the Godavari basin data.
基金Supported by National Natural Science Foundation of China(41205073,41275099)General Program of Nanjing Joint Center of Atmospheric Research(NJCAR2016MS02)
文摘Based on the dynamic framework of Lorenz 96 model,the ensemble prediction system(EPS)containing stochastic forcing has been developed.In this system,effects of stochastic forcing on the model climate state and ensemble mean prediction have been studied.The results show that the climate mean and standard deviation provided by a new computing paradigm by means of introduction of the proper stochastic forcing into numerical model integration process are closer to that of the true value than that made by the non-stochastic forcing.In other words,numerical model integration process with stochastic forcing has positive effect on the model climate state,and the effect is found to be positive mainly in the long lead time.Meanwhile,with respect to ensemble forecast effect yielded by white noise stochastic forcing,most results are better than those provided by no-stochastic forcing,and improvements pertaining to white noise stochastic forcing vary non-monotonically with the increase of the size of white noise.Moreover,the effects made by the identical white noise stochastic forcing also are different in various non-linear systems.With respect to EPS effect yielded by red noise stochastic forcing,most results are better than those provided by no-stochastic forcing,but only a part of ensemble forecast effect influenced by red noise is superior to that influenced by white noise.Finally,improvements pertaining to red noise stochastic forcing vary non-symmetrically and non-monotonically with the distribution of coefficientΦ.Besides,the selection of correlation coefficientΦis also dependent on non-linear models.
基金funded by Scientific Research Project of Guangxi Normal University of Science and Technology,grant number GXKS2022QN024.
文摘Precipitation is a significant index to measure the degree of drought and flood in a region,which directly reflects the local natural changes and ecological environment.It is very important to grasp the change characteristics and law of precipitation accurately for effectively reducing disaster loss and maintaining the stable development of a social economy.In order to accurately predict precipitation,a new precipitation prediction model based on extreme learning machine ensemble(ELME)is proposed.The integrated model is based on the extreme learning machine(ELM)with different kernel functions and supporting parameters,and the submodel with the minimum root mean square error(RMSE)is found to fit the test data.Due to the complex mechanism and factors affecting precipitation change,the data have strong uncertainty and significant nonlinear variation characteristics.The mean generating function(MGF)is used to generate the continuation factor matrix,and the principal component analysis technique is employed to reduce the dimension of the continuation matrix,and the effective data features are extracted.Finally,the ELME prediction model is established by using the precipitation data of Liuzhou city from 1951 to 2021 in June,July and August,and a comparative experiment is carried out by using ELM,long-term and short-term memory neural network(LSTM)and back propagation neural network based on genetic algorithm(GA-BP).The experimental results show that the prediction accuracy of the proposed method is significantly higher than that of other models,and it has high stability and reliability,which provides a reliable method for precipitation prediction.
文摘The magnitude and frequency of precipitation is of great significance in the field of hydrologic and hydraulic design and has wide applications in varied areas. However, the availability of precipitation data is limited to a few areas, where the rain gauges are successfully and efficiently installed. The magnitude and frequency of precipitation in ungauged sites can be assessed by grouping areas with similar characteristics. The procedure of grouping of areas having similar behaviour is termed as Regionalization. In this paper, RCDA cluster ensemble algorithm is employed to identify the homogeneous regions of rainfall in India. Cluster ensemble methods are commonly used to enhance the quality of clustering by combining multiple clustering schemes to produce a more robust scheme delivering similar homogeneous regions. The goal is to identify, analyse and describe hydrologically similar regions using RCDA cluster ensemble algorithm. RCDA cluster ensemble algorithm, which is based on discriminant analysis. The algorithm takes H base clustering schemes each with K clusters, obtained by any clustering method, as input and constructs discriminant function for each one of them. Subsequently, all the data tuples are predicted using H discriminant functions for cluster membership. Tuples with consistent predictions are assigned to the clusters, while tuples with inconsistent predictions are analyzed further and either assigned to clusters or declared as noise. RCDA algorithm has been compared with Best of K-means and Clue cluster ensemble of R software using traditional clustering quality measures. Further, domain knowledge based comparison has also been performed. All the results are encouraging and indicate better regionalization of the rainfall in different parts of India.
文摘For a particular clustering problems, selecting the best clustering method is a challenging problem.Research suggests that integrate the multiple clustering can improve the accuracy of clustering ensemble greatly. A new clustering ensemble approach based on the similarities in 2-mode networks is proposed in this paper. First of all, the data object and the initial clustering clusters transform into 2-mode networks, then using the similarities in 2-mode networks to calculate the similarity between different clusters iteratively to refine the adjacency matrix, K-means algorithm is finally used to get the final clustering, then obtain the final clustering results.The method effectively use the similarity between different clusters,example shows the feasibility of this method.