期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Applications of Bias-removed Ensemble Mean in the Gale Forecasts over the Yellow Sea and the Bohai Sea 被引量:3
1
作者 朱桦 智协飞 俞永庆 《Meteorological and Environmental Research》 CAS 2010年第11期4-8,共5页
Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Pr... Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Prediction System(NOGAPS) model at 12:00 UTC from June 28 to August 10 in 2009,the bias-removed ensemble mean(BRE) was used to do the forecast test on the sea surface wind fields,and the root-mean-square error(RMSE) was used to test and evaluate the forecast results.The results showed that the BRE considerably reduced the RMSEs of 24 and 48 h sea surface wind field forecasts,and the forecast skill was superior to that of the single model forecast.The RMSE decreases in the south of central Bohai Sea and the middle of the Yellow Sea were the most obvious.In addition,the BRE forecast improved evidently the forecast skill of the gale process which occurred during July 13-14 and August 7 in 2009.The forecast accuracy of the wind speed and the gale location was also improved. 展开更多
关键词 bias-removed ensemble mean Gale over the Yellow Sea and the Bohai Sea Forecast skill China
下载PDF
A Comparison of Three Kinds of Multimodel Ensemble Forecast Techniques Based on the TIGGE Data 被引量:41
2
作者 智协飞 祁海霞 +1 位作者 白永清 林春泽 《Acta meteorologica Sinica》 SCIE 2012年第1期41-51,共11页
Based on the ensemble mean outputs of the ensemble forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts), JMA (Japan Meteorological Agency), NCEP (National Centers for Environmental Predic... Based on the ensemble mean outputs of the ensemble forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts), JMA (Japan Meteorological Agency), NCEP (National Centers for Environmental Prediction), and UKMO (United Kingdom Met Office) in THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE) datasets, for the Northern Hemisphere (10~ 87.5~N, 0~ 360~) from i June 2007 to 31 August 2007, this study carried out multimodel ensemble forecasts of surface temperature and 500-hPa geopotential height, temperature and winds up to 168 h by using the bias-removed ensemble mean (BREM), the multiple linear regression based superensemble (LRSUP), and the neural network based superensemble (NNSUP) techniques for the forecast period from 8 to 31 August 2007. A running training period is used for BREM and LRSUP ensemble forecast techniques. It is found that BREM and LRSUP, at each grid point, have different optimal lengths of the training period. In general, the optimal training period for BREM is less than 30 days in most areas, while for LRSUP it is about 45 days. 展开更多
关键词 multimodel superensemble bias-removed ensemble mean multiple linear regression NEURALNETWORK running training period TIGGE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部