It was conjectured by Bouchet that every bidirected graph which admits a nowhere-zero κ flow will admit a nowhere-zero 6-flow. He proved that the conjecture is true when 6 is replaced by 216. Zyka improved the result...It was conjectured by Bouchet that every bidirected graph which admits a nowhere-zero κ flow will admit a nowhere-zero 6-flow. He proved that the conjecture is true when 6 is replaced by 216. Zyka improved the result with 6 replaced by 30. Xu and Zhang showed that the conjecture is true for 6-edge-connected graphs. And for 4-edge-connected graphs, Raspaud and Zhu proved it is true with 6 replaced by 4. In this paper, we show that Bouchet's conjecture is true with 6 replaced by 15 for 3-edge-connected graphs.展开更多
Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora...Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset.展开更多
In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,ha...In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,has poor diagnostic resolution.In this paper,a new method that combines SDG with qualitative trend analysis(QTA) is presented to improve the resolution.In the method,a bidirectional inference algorithm based on assumption and verification is used to find all the possible fault causes and their corresponding consistent paths in the SDG model.Then an improved QTA algorithm is used to extract and analyze the trends of nodes on the consis-tent paths found in the previous step.New consistency rules based on qualitative trends are used to find the real causes from the candidate causes.The resolution can be improved.This method combines the completeness feature of SDG with the good diagnostic resolution feature of QTA.The implementation of SDG-QTA based fault diagno-sis is done using the integrated SDG modeling,inference and post-processing software platform.Its application is illustrated on an atmospheric distillation tower unit of a simulation platform.The result shows its good applicability and efficiency.展开更多
This paper investigates the maximum network through- put for resource-constrained space networks based on the delay and disruption-tolerant networking (DTN) architecture. Specifically, this paper proposes a methodol...This paper investigates the maximum network through- put for resource-constrained space networks based on the delay and disruption-tolerant networking (DTN) architecture. Specifically, this paper proposes a methodology for calculating the maximum network throughput of multiple transmission tasks under storage and delay constraints over a space network. A mixed-integer linear programming (MILP) is formulated to solve this problem. Simula- tions results show that the proposed methodology can successfully calculate the optimal throughput of a space network under storage and delay constraints, as well as a clear, monotonic relationship between end-to-end delay and the maximum network throughput under storage constraints. At the same time, the optimization re- sults shine light on the routing and transport protocol design in space communication, which can be used to obtain the optimal network throughput.展开更多
基金Supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China Project(Grant No.10XNB054)
文摘It was conjectured by Bouchet that every bidirected graph which admits a nowhere-zero κ flow will admit a nowhere-zero 6-flow. He proved that the conjecture is true when 6 is replaced by 216. Zyka improved the result with 6 replaced by 30. Xu and Zhang showed that the conjecture is true for 6-edge-connected graphs. And for 4-edge-connected graphs, Raspaud and Zhu proved it is true with 6 replaced by 4. In this paper, we show that Bouchet's conjecture is true with 6 replaced by 15 for 3-edge-connected graphs.
基金supported by the Key Research&Development Plan Project of Shandong Province,China(No.2017GGX10127).
文摘Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset.
基金Supported by the Science and Technological Tackling Project of Heilongjiang Province(GB06A106)
文摘In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,has poor diagnostic resolution.In this paper,a new method that combines SDG with qualitative trend analysis(QTA) is presented to improve the resolution.In the method,a bidirectional inference algorithm based on assumption and verification is used to find all the possible fault causes and their corresponding consistent paths in the SDG model.Then an improved QTA algorithm is used to extract and analyze the trends of nodes on the consis-tent paths found in the previous step.New consistency rules based on qualitative trends are used to find the real causes from the candidate causes.The resolution can be improved.This method combines the completeness feature of SDG with the good diagnostic resolution feature of QTA.The implementation of SDG-QTA based fault diagno-sis is done using the integrated SDG modeling,inference and post-processing software platform.Its application is illustrated on an atmospheric distillation tower unit of a simulation platform.The result shows its good applicability and efficiency.
基金supported by the National Natural Sciences Foundation of China(6113200261321061+3 种基金6123101161201183)the National Basic Research Program of China(2014CB340206)the Tsinghua University Initiative Scientific Research Program(2011Z05117)
文摘This paper investigates the maximum network through- put for resource-constrained space networks based on the delay and disruption-tolerant networking (DTN) architecture. Specifically, this paper proposes a methodology for calculating the maximum network throughput of multiple transmission tasks under storage and delay constraints over a space network. A mixed-integer linear programming (MILP) is formulated to solve this problem. Simula- tions results show that the proposed methodology can successfully calculate the optimal throughput of a space network under storage and delay constraints, as well as a clear, monotonic relationship between end-to-end delay and the maximum network throughput under storage constraints. At the same time, the optimization re- sults shine light on the routing and transport protocol design in space communication, which can be used to obtain the optimal network throughput.