Thermoelectric thin film has attracted a lot of attention due to its potential in fabricating micropower generator in chip sensors for internet of things(IoT).However,the undeveloped performance of n-type thermoelectr...Thermoelectric thin film has attracted a lot of attention due to its potential in fabricating micropower generator in chip sensors for internet of things(IoT).However,the undeveloped performance of n-type thermoelectric thin film limits its widely application.In this work,a facile post-selenization diffusion reaction method is employed to introduce Se into Bi_(2)Te_(3)thin films,in order to optimize the carrier transport properties.Experimental and theoretical calculation results indicate that the carrier concentration decreases and density of states increases after Se doping,leading to the enhancement of Seebeck coefficient.Further,adjusting the diffusion reaction temperature can maintain the carrier concentration while increasing the mobility simultaneously,resulting in a high power factor of 1.5 mW/(m·K^(2)),which is eight times higher than that of the pristine Bi_(2)Te_(3)thin films.Subsequently,a thin film device fabricated by the present Se-doped Bi_(2)Te_(3)thin films shows the highest output power of 60.20 nW under the temperature difference of 37 K,indicating its potential for practical use.展开更多
基金the Technology Plan Project of Shenzhen(20220810154601001 and JCYJ20220531103601003)National Natural Science Foundation of China(No.62274112)Guangdong Basic and Applied Basic Research Foundation(2019A1515110107 and 2022A1515010929)。
文摘Thermoelectric thin film has attracted a lot of attention due to its potential in fabricating micropower generator in chip sensors for internet of things(IoT).However,the undeveloped performance of n-type thermoelectric thin film limits its widely application.In this work,a facile post-selenization diffusion reaction method is employed to introduce Se into Bi_(2)Te_(3)thin films,in order to optimize the carrier transport properties.Experimental and theoretical calculation results indicate that the carrier concentration decreases and density of states increases after Se doping,leading to the enhancement of Seebeck coefficient.Further,adjusting the diffusion reaction temperature can maintain the carrier concentration while increasing the mobility simultaneously,resulting in a high power factor of 1.5 mW/(m·K^(2)),which is eight times higher than that of the pristine Bi_(2)Te_(3)thin films.Subsequently,a thin film device fabricated by the present Se-doped Bi_(2)Te_(3)thin films shows the highest output power of 60.20 nW under the temperature difference of 37 K,indicating its potential for practical use.