期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impact of the Thicknesses of the p and p+ Regions on the Electrical Parameters of a Bifacial PV Cell
1
作者 Ramatou Konate Bernard Zouma +3 位作者 Adama Ouedraogo Bruno Korgo Martial Zoungrana Sié Kam 《Energy and Power Engineering》 2022年第2期133-145,共13页
The present paper is about a contribution to the bifacial PV cell performances improvement. The PV cell efficiency is weak compared to the strong energy demand. In this study, the base thickness impacts and the p+<... The present paper is about a contribution to the bifacial PV cell performances improvement. The PV cell efficiency is weak compared to the strong energy demand. In this study, the base thickness impacts and the p+</sup> zone size influence are evaluated on the rear face of the polycrystalline back surface field bifacial silicon PV cell. The photocurrent density and photovoltage behaviors versus thickness of these regions are studied. From a three-dimensional grain of the polycrystalline bifacial PV cell, the magneto-transport and continuity equations of excess minority carriers are solved to find the expression of the density of excess minority carriers and the related electrical parameters, such as the photocurrent density, the photovoltage and the electric power for simultaneous illumination on both sides. The photocurrent density, the photovoltage and electric power versus junction dynamic velocity decrease for different thicknesses of base and the p+</sup> region increases for simultaneous illumination on both sides. It is found that the thickness of the p+</sup> region at 0.1 μm and the base size at 100 μm allow reaching the best bifacial PV cell performances. Consequently, it is imperative to consider the reduction in the thickness of the bifacial PV cell for exhibition of better performance. This reduced the costs and increase production speed while increasing conversion efficiency. 展开更多
关键词 Doped p+ Region bifacial pv cell Photocurrent Density PHOTOVOLTAGE Polycrystalline Solar cell
下载PDF
Testing Bifacial PV Cells in Symmetric and Asymmetric Concentrating CPC Collectors
2
作者 Gomes Joao Henrik Davidsson +2 位作者 Gruffman Christian Maston Stefan Karlsson Bjorn 《Engineering(科研)》 2013年第1期185-190,共6页
Bifacial PV cells have the capacity to produce solar electricity from both sides and, thus, amongst other advantages, allow a significantly increase both in peak and annual power output while utilizing the same amount... Bifacial PV cells have the capacity to produce solar electricity from both sides and, thus, amongst other advantages, allow a significantly increase both in peak and annual power output while utilizing the same amount of silicone. According to the manufacturer, the bifacial cells are around 1.3 times more expensive than the single-sided cells. This way, bifacial PV cells can effectively reduce the cost of solar power for certain applications. Today, the most common application for these cells is in stationary vertical collectors which are exposed to sunlight from both sides, as the relative position of the sun changes throughout the day. Another possible application is to utilize these cells in concentrating collectors. Three test prototypes utilizing bifacial PV cells were built. The initial two prototypes were built for indoor testing and differed only in geometry of the reflector, one being asymmetric and the other symmetric. Both prototypes were evaluated in an indoor solar simulator. Both reflector designs yielded positive electrical performance results and similar efficiencies from both sides of the cell were achieved. However, lower fill factor than expected was achieved for both designs when compared to the single cell tests. The results are discussed and suggestions for further testing are presented. A third prototype was built in order to perform outdoor evaluations. This prototype utilized a bifacial PV cells string laminated in silicone enclosed between 2 standard glass panes and a collector box with an asymmetric CPC concentrator. The prototype peak electrical efficiency and temperature dependence were evaluated. A comparison between the performance of the bottom and top sides of the asymmetric collector is also presented. Additionally, the incidence modifier angle (IAM) is also briefly discussed. 展开更多
关键词 bifacial pv cells Symmetric and asymmetric concentrating concentrators reflector geometry PROTOTYPE NOCT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部