With the recent advancements in computer technologies,the amount of data available is increasing day by day.However,excessive amounts of data create great challenges for users.Meanwhile,cloud computing services provid...With the recent advancements in computer technologies,the amount of data available is increasing day by day.However,excessive amounts of data create great challenges for users.Meanwhile,cloud computing services provide a powerful environment to store large volumes of data.They eliminate various requirements,such as dedicated space and maintenance of expensive computer hardware and software.Handling big data is a time-consuming task that requires large computational clusters to ensure successful data storage and processing.In this work,the definition,classification,and characteristics of big data are discussed,along with various cloud services,such as Microsoft Azure,Google Cloud,Amazon Web Services,International Business Machine cloud,Hortonworks,and MapR.A comparative analysis of various cloud-based big data frameworks is also performed.Various research challenges are defined in terms of distributed database storage,data security,heterogeneity,and data visualization.展开更多
In recent years, due to the widespread use of electronic services and the use of social network as well, large volumes of information are being made that this information contains various types of things such as video...In recent years, due to the widespread use of electronic services and the use of social network as well, large volumes of information are being made that this information contains various types of things such as videos, photos, texts etc. besides large volume. Due to the high volume and the lack of specificity of this information, covering them through traditional and relational databases is not possible and modem solutions should be used for processing them, so that processing speed is also covered. Data storage for processing and the way of accessing to them in memory, network communication, covering required features for distributed system in solutions that are in use for storing big data, are the items that should be covered. In this paper, a collection of advantages and challenges of big data, special features and characteristics of them has been provided and with the introduction of technologies in use, storage methods are studied and research opportunities to continue the way will be introduced.展开更多
With the growth of distributed computing systems, the modern Big Data analysis platform products often have diversified characteristics. It is hard for users to make decisions when they are in early contact with Big D...With the growth of distributed computing systems, the modern Big Data analysis platform products often have diversified characteristics. It is hard for users to make decisions when they are in early contact with Big Data platforms. In this paper, we discussed the design principles and research directions of modern Big Data platforms by presenting research in modern Big Data products. We provided a detailed review and comparison of several state-ofthe-art frameworks and concluded into a typical structure with five horizontal and one vertical. According to this structure, this paper presents the components and modern optimization technologies developed for Big Data, which helps to choose the most suitable components and architecture from various Big Data technologies based on requirements.展开更多
The rapid growth of remote sensing big data(RSBD)has attracted considerable attention from both academia and industry.Despite the progress of computer technologies,conventional computing implementations have become te...The rapid growth of remote sensing big data(RSBD)has attracted considerable attention from both academia and industry.Despite the progress of computer technologies,conventional computing implementations have become technically inefficient for processing RSBD.Cloud computing is effective in activating and mining large-scale heterogeneous data and has been widely applied to RSBD over the past years.This study performs a technical review of cloud-based RSBD storage and computing from an interdisciplinary viewpoint of remote sensing and computer science.First,we elaborate on four critical technical challenges resulting from the scale expansion of RSBD applications,i.e.raster storage,metadata management,data homogeneity,and computing paradigms.Second,we introduce state-of-the-art cloud-based data management technologies for RSBD storage.The unit for manipulating remote sensing data has evolved due to the scale expansion and use of novel technologies,which we name the RSBD data model.Four data models are suggested,i.e.scenes,ARD,data cubes,and composite layers.Third,we summarize recent research on the application of various cloud-based parallel computing technologies to RSBD computing implementations.Finally,we categorize the architectures of mainstream RSBD platforms.This research provides a comprehensive review of the fundamental issues of RSBD for computing experts and remote sensing researchers.展开更多
With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Int...With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Internet, the apps replace the PC client software as the major target of malicious usage. In this paper, to improve the security status of current mobile apps, we propose a methodology to evaluate mobile apps based on cloud computing platform and data mining. We also present a prototype system named MobSafe to identify the mobile app's virulence or benignancy. Compared with traditional method, such as permission pattern based method, MobSafe combines the dynamic and static analysis methods to comprehensively evaluate an Android app. In the implementation, we adopt Android Security Evaluation Framework (ASEF) and Static Android Analysis Framework (SAAF), the two representative dynamic and static analysis methods, to evaluate the Android apps and estimate the total time needed to evaluate all the apps stored in one mobile app market. Based on the real trace from a commercial mobile app market called AppChina, we can collect the statistics of the number of active Android apps, the average number apps installed in one Android device, and the expanding ratio of mobile apps. As mobile app market serves as the main line of defence against mobile malwares, our evaluation results show that it is practical to use cloud computing platform and data mining to verify all stored apps routinely to filter out malware apps from mobile app markets. As the future work, MobSafe can extensively use machine learning to conduct automotive forensic analysis of mobile apps based on the generated multifaceted data in this stage.展开更多
文摘With the recent advancements in computer technologies,the amount of data available is increasing day by day.However,excessive amounts of data create great challenges for users.Meanwhile,cloud computing services provide a powerful environment to store large volumes of data.They eliminate various requirements,such as dedicated space and maintenance of expensive computer hardware and software.Handling big data is a time-consuming task that requires large computational clusters to ensure successful data storage and processing.In this work,the definition,classification,and characteristics of big data are discussed,along with various cloud services,such as Microsoft Azure,Google Cloud,Amazon Web Services,International Business Machine cloud,Hortonworks,and MapR.A comparative analysis of various cloud-based big data frameworks is also performed.Various research challenges are defined in terms of distributed database storage,data security,heterogeneity,and data visualization.
文摘In recent years, due to the widespread use of electronic services and the use of social network as well, large volumes of information are being made that this information contains various types of things such as videos, photos, texts etc. besides large volume. Due to the high volume and the lack of specificity of this information, covering them through traditional and relational databases is not possible and modem solutions should be used for processing them, so that processing speed is also covered. Data storage for processing and the way of accessing to them in memory, network communication, covering required features for distributed system in solutions that are in use for storing big data, are the items that should be covered. In this paper, a collection of advantages and challenges of big data, special features and characteristics of them has been provided and with the introduction of technologies in use, storage methods are studied and research opportunities to continue the way will be introduced.
基金supported by the Research Fund of Tencent Computer System Co.Ltd.under Grant No.170125
文摘With the growth of distributed computing systems, the modern Big Data analysis platform products often have diversified characteristics. It is hard for users to make decisions when they are in early contact with Big Data platforms. In this paper, we discussed the design principles and research directions of modern Big Data platforms by presenting research in modern Big Data products. We provided a detailed review and comparison of several state-ofthe-art frameworks and concluded into a typical structure with five horizontal and one vertical. According to this structure, this paper presents the components and modern optimization technologies developed for Big Data, which helps to choose the most suitable components and architecture from various Big Data technologies based on requirements.
基金supported by Strategic Priority Research Program of the Chinese Academy of Sciences,Project title:CASEarth:[Grant Number XDA19080103,XDA19080101]Innovation Drive Development Special Project of Guangxi:[Grant Number GuikeAA20302022]National Natural Science Foundation of China:[Grant Number 41974108].
文摘The rapid growth of remote sensing big data(RSBD)has attracted considerable attention from both academia and industry.Despite the progress of computer technologies,conventional computing implementations have become technically inefficient for processing RSBD.Cloud computing is effective in activating and mining large-scale heterogeneous data and has been widely applied to RSBD over the past years.This study performs a technical review of cloud-based RSBD storage and computing from an interdisciplinary viewpoint of remote sensing and computer science.First,we elaborate on four critical technical challenges resulting from the scale expansion of RSBD applications,i.e.raster storage,metadata management,data homogeneity,and computing paradigms.Second,we introduce state-of-the-art cloud-based data management technologies for RSBD storage.The unit for manipulating remote sensing data has evolved due to the scale expansion and use of novel technologies,which we name the RSBD data model.Four data models are suggested,i.e.scenes,ARD,data cubes,and composite layers.Third,we summarize recent research on the application of various cloud-based parallel computing technologies to RSBD computing implementations.Finally,we categorize the architectures of mainstream RSBD platforms.This research provides a comprehensive review of the fundamental issues of RSBD for computing experts and remote sensing researchers.
基金the National Key Basic Research and Development (973) Program of China (Nos. 2012CB315801 and 2011CB302805)the National Natural Science Foundation of China (Nos. 61161140320 and 61233016)Intel Research Council with the title of Security Vulnerability Analysis based on Cloud Platform with Intel IA Architecture
文摘With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Internet, the apps replace the PC client software as the major target of malicious usage. In this paper, to improve the security status of current mobile apps, we propose a methodology to evaluate mobile apps based on cloud computing platform and data mining. We also present a prototype system named MobSafe to identify the mobile app's virulence or benignancy. Compared with traditional method, such as permission pattern based method, MobSafe combines the dynamic and static analysis methods to comprehensively evaluate an Android app. In the implementation, we adopt Android Security Evaluation Framework (ASEF) and Static Android Analysis Framework (SAAF), the two representative dynamic and static analysis methods, to evaluate the Android apps and estimate the total time needed to evaluate all the apps stored in one mobile app market. Based on the real trace from a commercial mobile app market called AppChina, we can collect the statistics of the number of active Android apps, the average number apps installed in one Android device, and the expanding ratio of mobile apps. As mobile app market serves as the main line of defence against mobile malwares, our evaluation results show that it is practical to use cloud computing platform and data mining to verify all stored apps routinely to filter out malware apps from mobile app markets. As the future work, MobSafe can extensively use machine learning to conduct automotive forensic analysis of mobile apps based on the generated multifaceted data in this stage.