期刊文献+
共找到1,902篇文章
< 1 2 96 >
每页显示 20 50 100
Design and Research on Identification of Typical Tea Plant Diseases Using Small Sample Learning
1
作者 Jian Yang 《Journal of Electronic Research and Application》 2024年第5期21-25,共5页
Tea plants are susceptible to diseases during their growth.These diseases seriously affect the yield and quality of tea.The effective prevention and control of diseases requires accurate identification of diseases.Wit... Tea plants are susceptible to diseases during their growth.These diseases seriously affect the yield and quality of tea.The effective prevention and control of diseases requires accurate identification of diseases.With the development of artificial intelligence and computer vision,automatic recognition of plant diseases using image features has become feasible.As the support vector machine(SVM)is suitable for high dimension,high noise,and small sample learning,this paper uses the support vector machine learning method to realize the segmentation of disease spots of diseased tea plants.An improved Conditional Deep Convolutional Generation Adversarial Network with Gradient Penalty(C-DCGAN-GP)was used to expand the segmentation of tea plant spots.Finally,the Visual Geometry Group 16(VGG16)deep learning classification network was trained by the expanded tea lesion images to realize tea disease recognition. 展开更多
关键词 Small sample learning tea plant disease VGG16 deep learning
下载PDF
Chlorophyllase is transcriptionally regulated by CsMYB308/CsDOF3 in young leaves of tea plant 被引量:1
2
作者 Weimin Liu Siyan Liu +5 位作者 Kaiyue Zhang Mingwei Xie Haiwei Sun Xiaoqin Huang Lixia Zhang Min Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第6期1162-1176,共15页
Chlorophyll contributes to tea coloration, which is an important factor in tea quality. Chlorophyll metabolism is induced by light, but the transcriptional regulation responsible for light-induced chlorophyll metaboli... Chlorophyll contributes to tea coloration, which is an important factor in tea quality. Chlorophyll metabolism is induced by light, but the transcriptional regulation responsible for light-induced chlorophyll metabolism is largely unknown in tea leaves. Here, we characterized a chlorophyllase1 gene CsCLH1 from young tea leaves and showed it is essential for chlorophyll metabolism, using transient overexpression and silencing in tea leaves and ectopic overexpression in Arabidopsis. CsCLH1 was significantly induced by high light. The DOF protein CsDOF3, an upstream direct regulator of CsCLH1, was also identified. Acting as a nuclear-localized transcriptional factor, CsDOF3 responded for light and repressed CsCLH1 transcription and increased chlorophyll content by directly binding to the AAAG cis-element in the CsCLH1 promoter. CsDOF3was able to physically interact with the R2R3-MYB transcription factor CsMYB308 and interfere with transcriptional activity of CsCLH1. In addition, CsMYB308 binds to the CsCLH1 promoter to enhance CsCLH1 expression and decrease chlorophyll content. CsMYB308 and CsDOF3 act as an antagonistic complex to regulate CsCLH1 transcription and chlorophyll in young leaves. Collectively, the study adds to the understanding of the transcriptional regulation of chlorophyll in tea leaves in response to light and provides a basis for improving the appearance of tea. 展开更多
关键词 tea plant CHLOROPHYLL CsCLH1 CsDOF3 transcription factor CsMYB308 transcription factor
下载PDF
Enhanced Disease Identification Model for Tea Plant Using Deep Learning 被引量:1
3
作者 Santhana Krishnan Jayapal Sivakumar Poruran 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期1261-1275,共15页
Tea plant cultivation plays a significant role in the Indian economy.The Tea board of India supports tea farmers to increase tea production by preventing various diseases in Tea Plant.Various climatic factors and othe... Tea plant cultivation plays a significant role in the Indian economy.The Tea board of India supports tea farmers to increase tea production by preventing various diseases in Tea Plant.Various climatic factors and other parameters cause these diseases.In this paper,the image retrieval model is developed to identify whether the given input tea leaf image has a disease or is healthy.Automation in image retrieval is a hot topic in the industry as it doesn’t require any form of metadata related to the images for storing or retrieval.Deep Hashing with Integrated Autoencoders is our proposed method for image retrieval in Tea Leaf images.It is an efficient andflexible way of retrieving Tea Leaf images.It has an integrated autoencoder which makes it better than the state-of-the-art methods giving better results for the MAP(mean average precision)scores,which is used as a parameter to judge the efficiency of the model.The autoencoders used with skip connections increase the weightage of the prominent features present in the previous tensor.This constitutes a hybrid model for hashing and retrieving images from a tea leaf data set.The proposed model will examine the input tea leaf image and identify the type of tea leaf disease.The relevant image will be retrieved based on the resulting type of disease.This model is only trained on scarce data as a real-life scenario,making it practical for many applications. 展开更多
关键词 Image retrieval autoencoders deep hashing plant disease tea leaf blister blight
下载PDF
Core collection construction of tea plant germplasm in Anhui Province based on genetic diversity analysis using simple sequence repeat markers
4
作者 TAO Ling-ling TING Yu-jie +7 位作者 CHEN Hong-rong WEN Hui-lin XIE Hui LUO Ling-yao HUANG Ke-lin ZHU Jun-yan LIU Sheng-rui WEI Chao-ling 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第9期2719-2728,共10页
The tea plant[Camellia sinensis(L.)O.Kuntze]is an industrial crop in China.The Anhui Province has a long history of tea cultivation and has a large resource of tea germplasm with abundant genetic diversity.To reduce t... The tea plant[Camellia sinensis(L.)O.Kuntze]is an industrial crop in China.The Anhui Province has a long history of tea cultivation and has a large resource of tea germplasm with abundant genetic diversity.To reduce the cost of conservation and utilization of germplasm resources,a core collection needs to be constructed.To this end,573 representative tea accessions were collected from six major tea-producing areas in Anhui Province.Based on 60 pairs of simple sequence repeat(SSR)markers,phylogenetic relationships,population structure and principal coordinate analysis(PCoA)were conducted.Phylogenetic analysis indicated that the 573 tea individuals clustered into five groups were related to geographical location and were consistent with the results of the PCoA.Finally,we constructed a core collection consisting of 115 tea individuals,accounting for 20%of the whole collection.The 115 core collections were considered to have a 90.9%retention rate for the observed number of alleles(Na),and Shannon’s information index(I)of the core and whole collections were highly consistent.Of these,39 individuals were preserved in the Huangshan area,accounting for 33.9%of the core collection,while only 10 individuals were reserved in the Jinzhai County,accounting for 8.9%of the core set.PCoA of the accessions in the tea plant core collection exhibited a pattern nearly identical to that of the accessions in the entire collection,further supporting the broad representation of the core germplasm in Anhui Province.The results demonstrated that the core collection could represent the genetic diversity of the original collection.Our present work is valuable for the high-efficiency conservation and utilization of tea plant germplasms in Anhui Province. 展开更多
关键词 tea plant core collection genetic diversity SSR markers
下载PDF
Monitoring Thosea sinensis Walker in Tea Plantations Based on UAV Multi- Spectral Image
5
作者 Lin Yuan Qimeng Yu +3 位作者 Yao Zhang Xiaochang Wang Ouguan Xu Wenjing Li 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第3期747-761,共15页
Thosea sinensis Walker(TSW)rapidly spreads and severely damages the tea plants.Therefore,finding a reliable operational method for identifying the TSW-damaged areas via remote sensing has been a focus of a research co... Thosea sinensis Walker(TSW)rapidly spreads and severely damages the tea plants.Therefore,finding a reliable operational method for identifying the TSW-damaged areas via remote sensing has been a focus of a research community.Such methods also enable us to calculate the precise application of pesticides and prevent the subsequent spread of the pests.In this work,based on the unmanned aerial vehicle(UAV)platform,five band images of multispectral red-edge camera were obtained and used for monitoring the TSW in tea plantations.By combining the minimum redundancy maximum relevance(mRMR)with the selected spectral features,a comprehensive spectral selection strategy was proposed.Then,based on the selected spectral features,three classic machine learning algorithms,including random forest(RF),support vector machine(SVM),and k-nearest neighbors(KNN)were used to construct the pest monitoring model and were evaluated and compared.The results showed that the strategy proposed in this work obtained ideal monitoring accuracy by only using the combination of a few optimized features(2 or 4).In order to differentiate the healthy and TSW-damaged areas(2-class model),the monitoring accuracies of all the three models were computed,which were above 96%.The RF model used the least number of features,including only SAVI and Bandred.In order to further discriminate the pest incidence levels(3-class model),the monitoring accuracies of all the three models were computed,which were above 80%,among which the RF algorithm based on SAVI,Band_(red),VARI__(green),and Band_(red_edge) features achieve the highest accuracy(OAA of 87%,and Kappa of 0.79).Considering the computational cost and model accuracy,this work recommends the RF model based on a few optimal feature combinations to monitor and distinguish the severity of TSW in tea plantations.According to the UAV remote sensing mapping results,the TSW infestation exhibited an aggregated distribution pattern.The spatial information of occurrence and severity can offer effective guidance for precise control of the pest.In addition,the relevant methods provide a reference for monitoring other leaf-eating pests,effectively improving the management level of plant protection in tea plantations,and guaranting the yield and quality of tea plantations. 展开更多
关键词 Unmanned aerial vehicle diseases and pests monitoring tea plant MULTISPECTRAL Thosea sinensis Walker
下载PDF
Genetic analyses of ancient tea trees provide insights into the breeding history and dissemination of Chinese Assam tea(Camellia sinensis var.assamica)
6
作者 Miao-Miao Li Muditha K.Meegahakumbura +5 位作者 Moses C.Wambulwa Kevin S.Burgess Michael Möller Zong-Fang Shen De-Zhu Li Lian-Ming Gao 《Plant Diversity》 SCIE CAS CSCD 2024年第2期229-237,共9页
Chinese Assam tea(Camellia sinensis var.assamica)is an important tea crop with a long history of cultivation in Yunnan,China.Despite its potential value as a genetic resource,its genetic diversity and domestication/br... Chinese Assam tea(Camellia sinensis var.assamica)is an important tea crop with a long history of cultivation in Yunnan,China.Despite its potential value as a genetic resource,its genetic diversity and domestication/breeding history remain unclear.To address this issue,we genotyped 469 ancient tea plant trees representing 26 C.sinensis var.assamica populations,plus two of its wild relatives(six and three populations of C.taliensis and C.crassicolumna,respectively)using 16 nuclear microsatellite loci.Results showed that Chinese Assam tea has a relatively high,but comparatively lower gene diversity(H_(S)=0.638)than the wild relative C.crassicolumna(H_S=0.658).Clustering in STRUCTURE indicated that Chinese Assam tea and its two wild relatives formed distinct genetic groups,with considerable interspecific introgression.The Chinese Assam tea accessions clustered into three gene pools,corresponding well with their geographic distribution.However,New Hybrids analysis indicated that 68.48%of ancient Chinese Assam tea plants from Xishuangbanna were genetic intermediates between the Puer and Lincang gene pools.In addition,10%of the ancient Chinese Assam tea individuals were found to be hybrids between Chinese Assam tea and C.taliensis.Our results suggest that Chinese Assam tea was domesticated separately in three gene pools(Puer,Lincang and Xishuangbanna)in the Mekong River valley and that the hybrids were subsequently selected during the domestication process.Although the domestication history of Chinese Assam tea in southwestern Yunnan remains complex,our results will help to identify valuable genetic resources that may be useful in future tea breeding programs. 展开更多
关键词 tea plant Hybrid origin Genetic diversity Domestication history Camellia sinensis var.assamica Camellia taliensis
下载PDF
Analysis and Evaluation of Biochemical Components in Bitter Tea Plant Germplasms 被引量:7
7
作者 王新超 姚明哲 +1 位作者 马春雷 陈亮 《Agricultural Science & Technology》 CAS 2008年第4期127-131,共5页
Bitter tea is a special kind of tea germplasm in China.The major biochemical components of 24 bitter teas and other 8 Camellia sinensis var.sinensis and 8 C.sinensis var.assamica tea germplasms,which were stored in th... Bitter tea is a special kind of tea germplasm in China.The major biochemical components of 24 bitter teas and other 8 Camellia sinensis var.sinensis and 8 C.sinensis var.assamica tea germplasms,which were stored in the China National Germplasm Hangzhou Tea Repository(CNGHTR),were analyzed and evaluated.The results showed that no significant differences of major biochemical components affecting the tea quality were found between bitter tea and common tea.According to the processing suitability index,bitter tea was suitable for the manufacturing of black tea;while according to evolutionary indices such as the composition and content of catechin,bitter tea was similar to C.sinensis var.assamica belonging to the relatively primitive type in evolution.The results of cluster analysis indicated that bitter tea was clustered with C.sinensis var.assamica,so it could be considered to belong to C.sinensis var.assamica. 展开更多
关键词 tea plant(Camellia sinensis) BITTER tea BIOCHEMICAL component CATECHINS Cluster analysis
下载PDF
Preliminary Report on Application Effects of Slow-release Formula Fertilizer in Tea Plants
8
作者 陈勋 王友平 +4 位作者 王红娟 毛迎新 杨先进 邓海州 蔡智桂 《Agricultural Science & Technology》 CAS 2016年第10期2303-2307,共5页
In order to accelerate the construction of green production mode for tea in Hubei Province, improve the yield of tea and use efficiency of fertilizers, and improve the quality of tea, application effects of special sl... In order to accelerate the construction of green production mode for tea in Hubei Province, improve the yield of tea and use efficiency of fertilizers, and improve the quality of tea, application effects of special slow-release formula fertilizer in tea plants were investigated in Wuhan. The results showed that compared with conventional fertilization, application of tea plant-specific slow-release formula fertilizer improved the yield of tea by more than 30%. The amino acid content in tea was increased by 21.05% and 30.82%, respectively, and the income was increased 27 696 (33.88%) and 27 624 (33.79%) yuan/hm2, respectively. 展开更多
关键词 tea plant Specific slow-release formula fertilizer Application effect
下载PDF
Preliminary Study on the Application of Jiayuan Organic Fertilizer on Tea Plant 被引量:5
9
作者 雷该翔 陈勋 康伟 《Agricultural Science & Technology》 CAS 2016年第5期1152-1154,1237,共4页
A trial was conducted by using Jiayuan organic fertilizer in Chibi to investigate its effect on tea plant and ascertain the possibility of high quality and high yield.The results indicated that such organic fertilizer... A trial was conducted by using Jiayuan organic fertilizer in Chibi to investigate its effect on tea plant and ascertain the possibility of high quality and high yield.The results indicated that such organic fertilizer could achieve the effects of promoting the growth of tea plant,increasing the weight of the plucked flesh leaves,improving tea yield,increasing the contents of main functional substances such as tea polyphenols and amino acids and improving tea quality.It also showed excellent effect in maintaining or improving soil environmental sanitation indicators and contained no plant growth hormones. 展开更多
关键词 tea plant Organic fertilizer Application effect
下载PDF
Distribution of Aluminum and Fluoride in Tea Plant and Soil of Tea Garden in Central and Southwest China 被引量:15
10
作者 XIE Zhonglei CHEN Zhuo +3 位作者 SUN Wentian GUO Xiaojing YIN Bo WANG Jinghua 《Chinese Geographical Science》 SCIE CSCD 2007年第4期376-382,共7页
The distribution of Al and F contents and the relationship between Al and F in tea plants and soils of 12 tea gardens in Central and Southwest China were investigated from October 31 to November 14, 2006. The results ... The distribution of Al and F contents and the relationship between Al and F in tea plants and soils of 12 tea gardens in Central and Southwest China were investigated from October 31 to November 14, 2006. The results show that there were differences in pH, CEC, the contents of organic matter (OM), Al and F in the different soils of the tea gardens. The Al content ranged from 1196 to 7976mg/kg for old leaf, 370 to 2681mg/kg for young leaf and 285 to 525mg/kg for stem, whereas the content of F ranged from 221 to 1504mg/kg for old leaf, 49 to 602mg/kg for young leaf and 13.5 to 77.5mg/kg for stem. The concentrations of labile Al varied obviously in the different soils, but the distribution law of labile Al content for the same garden was Alexchangeable≈AlFe.Mn oxide〉Alorganic〉mlwater.soluble. The contents of different labile F fractions varied slightly in the different soils and the different soil layers, though the exchangeable F content was lowest among the labile F in the soils. The concentrations of Al and F in tea plants increased with increasing amount of water-soluble Al or F, especially the amount of water-soluble fractions in the soil layer of 0-20cm. The correlation between Al content and F content in the tea leaf was more significant than that in the tea stem. Furthermore, the correlation between Al content and F content in whole tea plant was strongly significant (r=0.8763, p〈0.01, n=36). There were evident tendency that Al concentration increased with the increase of F concentration in different soil layers. The correlation of water-soluble Al with water-soluble F in all soils was also strongly significant (r=0.7029, p〈0.01, n=34). The results may provide a proof that Al and F are jointly taken up by tea plants to some extent in natural tea gardens. 展开更多
关键词 tea garden soil tea plant ALUMINUM FLUORIDE
下载PDF
Transport of Nitrogen Assimilation in Xylem Vessels of Green Tea Plants Fed with NH_4-N and NO_3-N 被引量:21
11
作者 K. OH T. KATO H. L. XU 《Pedosphere》 SCIE CAS CSCD 2008年第2期222-226,共5页
An experiment was carried out to study the transport process of nitrogen (N) assimilation from tea roots by monitoring the dynamic composition of N compounds in xylem sap after 15^N-NO3 and 15^N-NH4 were fed to the ... An experiment was carried out to study the transport process of nitrogen (N) assimilation from tea roots by monitoring the dynamic composition of N compounds in xylem sap after 15^N-NO3 and 15^N-NH4 were fed to the root of tea plants (Camellia sinensis L.). Results showed that the main amino acids were glutamine, theanine, axginine, asparic acid and glutamic acid, which accounted for 49%, 17%, 8%, 7%, and 4%, respectively, of the total amino acids in the xylem sap. After the tea plants were fed with 15^N-NO3 and 15^N-NH4 for 48 h, the amount of total amino acids in xylem sap significantly increased and those fed with 15^N-NH4 had higher increment than those with 15^N-NOa. Two hours after 15^N- NO3 and 15^N-NH4 were fed, 15N abundance in glutamine, asparagine, glutamic acid, alanine, and arginine were detected and increased quickly over time. This indicated that it took less than 2 h for NO3-N and NH4-N to be absorbed by tea roots, incorporated into the above amino acids and transported to the xylem sap. Rapid increase in 15^N-NO3 in the xylem sap of tea plants fed with 15^N-NO3 indicated that nitrate could be directly transported to the xylem sap. Glutamine, theanine, and alanine were the main amino acids transported in xylem sap of tea plants fed with both 15^N-NO3 and 15^N-NH4. 展开更多
关键词 amino acid 15^N nitrogen assimilation tea plant xylem sap
下载PDF
Preparation of the UPOV Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability–Tea Plant [Camellia sinensis (L.) O. Kuntze] 被引量:7
12
作者 CHEN Liang YU Fu-lian +3 位作者 YAO Ming-zhe Lü Bo YANG Kun DU Yuan-yuan 《Agricultural Sciences in China》 CAS CSCD 2008年第2期224-231,共8页
Distinctness, Uniformity and Stability (DUS) testing is the technical base of Plant Variety Protection (PVP) and the scientific basis for the approval of Plant Breeder's Rights (PBR). DUS Test Guidelines are no... Distinctness, Uniformity and Stability (DUS) testing is the technical base of Plant Variety Protection (PVP) and the scientific basis for the approval of Plant Breeder's Rights (PBR). DUS Test Guidelines are not only the technical manuals for the DUS testing authorities to conduct the testing, but also the technical standards for the competent authorities to examine the DUS of new varieties of plants. Tea plant, originated from Yunnan Province, China, is a very important woody cash species in the world. The International Union for the Protection of New Varieties of Plants (UPOV) DUS Test Guidelines for tea plant is the first Test Guidelines prepared by China for the UPOV. In this article, the subject, selection, and determination of characteristics, states of expression of characteristics and the selection of example varieties, assessment of the UPOV DUS Test Guidelines for tea plant were elucidated in detail. Finally, the proposal of PVP for tea plant in China was also proposed. The preparation of UPOV DUS Test Guidelines for tea plant will have important significance both for promoting the development of PVP and increasing the status of international PVP fields for China. 展开更多
关键词 Distinctness Uniformity and Stability plant Variety Protection tea plant Test Guidelines International Union for the Protection of New Varieties of plants (UPOV)
下载PDF
Accumulation and distribution of arsenic and cadmium by tea plants 被引量:3
13
作者 Yuan-zhi SHI Jian-yun RUAN Li-feng MA Wen-yan HAN Fang WANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第3期265-270,共6页
It is important to research the rules about accumulation and distribution of arsenic and cadmium by tea plants,which will give us some scientific ideas about how to control the contents of arsenic and cadmium in tea.I... It is important to research the rules about accumulation and distribution of arsenic and cadmium by tea plants,which will give us some scientific ideas about how to control the contents of arsenic and cadmium in tea.In this study,by field investigation and pot trial,we found that mobility of arsenic and cadmium in tea plants was low.Most arsenic and cadmium absorbed were fixed in feeding roots and only small amount was transported to the above-ground parts.Distribution of arsenic and cadmium,based on their concentrations of unit dry matter,in tea plants grown on un-contaminated soil was in the order:feeding roots>stems≈main roots>old leaves>young leaves.When tea plants were grown on polluted soils simulated by adding salts of these two metals,feeding roots possibly acted as a buffer and defense,and arsenic and cadmium were transported less to the aboveground parts.The concentration of cadmium in soil significantly and negatively correlated with chlorophyll content,photosynthetic rate,transpiration rate and biomass production of tea plants. 展开更多
关键词 tea plant Arsenic (As) Cadmium (Cd) ABSORPTION ACCUMULATION
下载PDF
Quantitative Analysis of ATP Sulfurylase and Selenocysteine Methyltransferase Gene Expression in Different Organs of Tea Plant (<i>Camellia sinensis</i>) 被引量:3
14
作者 Shaoqiang Tao Juan Li +4 位作者 Xungang Gu Yanan Wang Qiang Xia Bing Qin Lin Zhu 《American Journal of Plant Sciences》 2012年第1期51-59,共9页
Tea plant (Camellia sinensis) has unique biological features for the study of cellular and molecular mechanisms, an evergreen broad-leaved woody plant which can accumulate selenium in soil abundant of Selenium. Expres... Tea plant (Camellia sinensis) has unique biological features for the study of cellular and molecular mechanisms, an evergreen broad-leaved woody plant which can accumulate selenium in soil abundant of Selenium. Expression of the genes related to Selenium (Se) metabolism is an adaptation to the soil environment for a long period. The purpose of the present study was to explore if there exist differences of expression about these genes in tea plant between growing in Selenium-abundant and normal soil. A quantitative real-time reverse transcription polymerase chain reaction (Q-RT-PCR) assay was done for quantification of ATP sulfurylase (APS) and selenocysteine methyltransferase (SMT) mRNA normalized to Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene in tea plant. Young leaves, mature leaves and tender roots from tea plants growing in soil abundant of Selenium were respectively obtained from Shitai County, Anhui Province, and also the relevant materials of the selenium un-enriched tea plant planted at agricultural garden of Ahui Agriculture University were taken as control for real-time PCR analysis. The results showed that APS1, APS2 and SMT expression levels for either young or mature leaves in selenium-enriched tea plant were lower than that in ordinary (selenium un-enriched) tea plant. In contrast, the APS1, APS2 and SMT expression level of roots in selenium-enriched tea plant were all higher than that in ordinary tea plant. APS1 gene expression level of roots in selenium-enriched tea plant was about 1.6 times higher than that in the ordinary tea plant, APS2 gene expression level was about 4.8-fold higher than that in the ordinary tea plant, SMT gene expression level was about 3.3 times higher than that in the ordinary tea plant. Among various tissues of selenium-enriched tea plant, APS1 gene relative expression level of young leaves was similar to or slightly higher than mature leaves, and the one of roots was the lowest among them;APS2 gene relative expression level of young leaves was similar to or slightly higher than the roots, and the one of mature leaves was the lowest among them;SMT gene relative expression level of young leaves was similar to or slightly higher than mature leaves, and the one of roots was the highest among them. Our results suggest that there existed correlation between selenium and expression levels of these genes. 展开更多
关键词 Quantitative Real-Time Polymerase Chain Reaction ATP Sulfurylase SELENOCYSTEINE METHYLTRANSFERASE tea plant (Camellia sinensis)
下载PDF
Genetic Diversity Analysis of Wild Tea Plants in Yunnan Province Using EST-SSR Markers 被引量:4
15
作者 Meng ZHOU Youyong LI +5 位作者 Xuemei SUN Jiajin WANG Jin XIE Hao CHENG Yungang WANG Benying LIU 《Agricultural Biotechnology》 CAS 2015年第1期9-15,共7页
In this study, 27 pairs of EST-SSR primers were employed to analyze the genetic diversity and genetic relationship of 100 wild tea plant germplasm re- sources and 22 cultivars, according to the results, a total of 88 ... In this study, 27 pairs of EST-SSR primers were employed to analyze the genetic diversity and genetic relationship of 100 wild tea plant germplasm re- sources and 22 cultivars, according to the results, a total of 88 polymorphic bands were amplified with 27 pairs of primers; the variation of effective alleles accounted for 69.01% ; a total of 183 genotypes were detected, with a variation range of 4 -11 ; averagely 6.78 genotypes were amplified with each primer pair; Shannon index (I) of 27 primer pairs ranged from 0.32 to I. 35, with an average of 0.88 ; the observed heterozygosity (0.52) was basically consistent with the expected het- erozygosity (0.52) ; the average polymorphism heterozygosity was 0.48, which was very close to 0.50 ; the average Nei's index was 0.51, which was higher than 0. 50 ; the average polymorphism information content (PIC) was 0.52, which was higher than 0.50, indicating high genetic diversity among wild tea germplasm resources in Yuunan Province. According to the clustering results, based on geographical origins and genetic backgrounds, 122 materials were clustered into 14 categories. Dendrogram based on Nei's genetic distance revealed complex genetic relationships among wild tea germplasm resources in Yunnan Province. This study provided certain reference for subsequent preservation, development and research of wild tea germplasm resources in China. 展开更多
关键词 tea plant[ Camellia sinensis (L.) O. Kuntze] EST-SSR Genetic diversity Genetic relationship
下载PDF
Detection and Discrimination of Tea Plant Stresses Based on Hyperspectral Imaging Technique at a Canopy Level 被引量:2
16
作者 Lihan Cui Lijie Yan +3 位作者 Xiaohu Zhao Lin Yuan Jing Jin Jingcheng Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2021年第2期621-634,共14页
Tea plant stresses threaten the quality of tea seriously.The technology corresponding to the fast detection and differentiation of stresses is of great significance for plant protection in tea plantation.In recent yea... Tea plant stresses threaten the quality of tea seriously.The technology corresponding to the fast detection and differentiation of stresses is of great significance for plant protection in tea plantation.In recent years,hyperspectral imaging technology has shown great potential in detecting and differentiating plant diseases,pests and some other stresses at the leaf level.However,the lack of studies at canopy level hampers the detection of tea plant stresses at a larger scale.In this study,based on the canopy-level hyperspectral imaging data,the methods for identifying and differentiating the three commonly occurred tea stresses(i.e.,the tea leafhopper,anthrax and sun burn)were studied.To account for the complexity of the canopy scenario,a stepwise detecting strategy was proposed that includes the process of background removal,identification of damaged areas and discrimination of stresses.Firstly,combining the successive projection algorithm(SPA)spectral analysis and K-means cluster analysis,the background and overexposed non-plant regions were removed from the image.Then,a rigorous sensitivity analysis and optimization were performed on various forms of spectral features,which yielded optimal features for detecting damaged areas(i.e.,YSV,Area,GI,CARI and NBNDVI)and optimal features for stresses discrimination(i.e.,MCARI,CI,LCI,RARS,TCI and VOG).Based on this information,the models for identifying damaged areas and those models for discriminating different stresses were established using K-nearest neighbor(KNN),Random Forest(RF)and Fisher discriminant analysis.The identification model achieved an accuracy over 95%,and the discrimination model achieved an accuracy over 93%for all stresses.The results suggested the feasibility of stress detection and differentiation using canopy-level hyperspectral imaging techniques,and indicated the potential for its extension over large areas. 展开更多
关键词 Hyperspectral imaging technology tea plant diseases and pests SUNBURN spectral analysis
下载PDF
Effects of Black Tea Extract on Transplantable and Solid Tumors in Swiss Albino Mice
17
作者 SEEMAJAVEI YOGESHWERSHUKLA 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2000年第3期213-218,共6页
The chemopreventive effects of green tea and its polyphenols are well documented in the literature. Epidemiological studies have suggested that green tea consumption might be effective in the prevention of certain hum... The chemopreventive effects of green tea and its polyphenols are well documented in the literature. Epidemiological studies have suggested that green tea consumption might be effective in the prevention of certain human cancers. About 80% of the tea is consumed as black tea. Limited studies have been carried out to assess the usefulness of black tea as anti_carcinogen. The present set of investigations were initiated to study the anti_tumorigenic potential of aqueous black tea extract (ATE) in Swiss albino mice in \%in vivo\% animal bioassay, using 7, 12 dimethyl_benzanthracene (DMBA) as carcinogen. In the experimental group, 2% ATE was given orally as sole source of drinking water, while the control were allowed to drink normal water, \%ad lib.\% The results revealed that drinking of 2% ATE could effectively inhibit the onset of tumorigenesis, cumulative number of tumors and average number of tumors per mouse. In ATE drinking group 44% animals remained tumor free till the termination of experiment, i. e. 26 weeks. In the second set of experiment the preventive efficacy of 2% ATE of different cultivars of black tea, viz orthodox, CTC and dust were tested in Ehrlich Ascites (EA) tumor bearing mice. The preventive effects of ATE were observed in terms of increased life span (ILS). All the cultivars of tea showed more than 25% increase in life span of the animals. Cytotoxic effect of various doses of all three cultivars of black tea was also observed \%in vitro \%on EA cells. 展开更多
关键词 ANIMALS Anticarcinogenic Agents Male Mice Neoplasm Transplantation Neoplasms Experimental plant Extracts Research Support Non-U.S. Gov't tea
下载PDF
Preparation of high molecular weight (HMW) genomic DNA from tea plant (Camellia sinensis) for BAC library construction 被引量:1
18
作者 LIN Jin-ke Dave Kudrna Rod A Wing 《Journal of Agricultural Science and Technology》 2009年第1期1-10,共10页
A bacterial artificial chromosome (BAC) library is an invaluable resource tool to initiate tea plant genomics research, and the preparation of high molecular weight (HMW) genomic DNA is a crucial first step for co... A bacterial artificial chromosome (BAC) library is an invaluable resource tool to initiate tea plant genomics research, and the preparation of high molecular weight (HMW) genomic DNA is a crucial first step for constructing a BAC Library. In order to construct a BAC library for enhancing tea plant genomics research, a new method for the preparation of tea pant high molecular weight (HMW) genomic DNA must be developed due to young tea plant leaves and shoots are notably rich in both tea polyphenols and tea polysaccharides. In this paper, a modified method for preparing high quality tea plant HMW genomi~ DNA was optimized, and the quality of tea plant genomic DNA was evaluated. The results were as follows: Critical indicators of HMW DNA preparation were the appearance of the smooth nuclei in solution (as opposed to sticky-gummy) before agarose plug solidification, non-dark colored nuclei plugs after lysis with an SDS/proteinase K solution, and the quality and quantity of HMW DNA fragments after restriction enzyme digestion. Importantly, 1% dissolved PVP-40 and 1% un-dissolved PVP-40 during the nuclei extraction steps, in conjunction with the removal of PVP-40 from the plug washing and nuclei lysis steps, were critical for achieving HWM tea plant DNA suitable for BAC library construction. Additionally, a third PFGE fraction selection step to eliminate contaminating small DNA fragments. The modifications provided parameters that may have prevented deleterious interactions from tea polyphenols and tea polysaccharides. The HMW genomic DNA produced by this new modified method has been used to successfully construct a large-insert tea plant BAC library, and thus may be suitable for BAC library construction from other plant species that contain similarly interfering compounds. 展开更多
关键词 tea plant bacterial artificial chromosome library BAC clone tea polyphenols high molecular weight genomic DNA preparation Camellia sinensis
下载PDF
Plant diversity in herbal tea and its traditional knowledge in Qingtian County, Zhejiang Province, China
19
作者 Yujing Liu Renchuan Hu +4 位作者 Songsong Shen Zheng Zhang Jing Zhang Xiaoling Song Sheng Qiang 《Plant Diversity》 SCIE CAS CSCD 2020年第6期464-472,共9页
Herbal teas composed of locally occurring plant species have long been used as the primary form of health care in Qingtian County,Zhejiang Province,China.However,large-scale emigration overseas and an aging population... Herbal teas composed of locally occurring plant species have long been used as the primary form of health care in Qingtian County,Zhejiang Province,China.However,large-scale emigration overseas and an aging population threaten the conservation of traditional knowledge of these herbal teas.Traditional knowledge about the plants used for these herbal teas is not well documented in Qingtian,despite their widespread use.The aim of this study was to assess the plant-cultural diversity of plants used as herbal teas,and to point out the prospective value of herbal teas used by Qingtian people.This study was conducted using semi-structured interviews,as well as field and market surveys.Forty-three local informants were interviewed.We recorded plant resources,plant parts used,local names,and medicinal uses.Quantitative ethnobotanical indices,including cognitive salience(CS),frequency of citation(FC),index of informant consensus(Fic)and use value(UV),were calculated to analyze the level of representativeness and relative importance of plants used in herbal teas.One hundred and twenty-nine species belonging to 75 families and 113 genera were reported to be used in herbal tea,with Compositae being the richest family.Whole plants are most commonly used to make herbal teas(66.7%).In this study,informants reported that 92.2%of plant species used in herbal teas are wild.The most utilized herbal preparation form is dry/fresh.Informants reported that herbal teas are used to treat 31 ailments.Our results show that the highest representativeness,based on CS and FC,was recorded for species Actinidia eriantha.Based on UV,the top five most used species are Goodyera schlechtendaliana,Plantago asiatica,Prunella vulgaris,Lophatherum gracile and Leonurus japonicus.The highest Fic was cited for dental medicine.This study helps document the status of current herbal teas in Qingtian.The use value and traditional knowledge of herbal teas have provided basic data for further research focused on bioactivity studies and sustainable utilization of the most important species. 展开更多
关键词 Herbal tea Medicine food homology plants plant-cultural diversity Qingtian
下载PDF
Genome-Wide Characterization of the Cellulose Synthase Gene Superfamily in Tea Plants(Camellia sinensis)
20
作者 Qianqian Li Qi Zhao +2 位作者 Xinzhuan Yao Baohui Zhang Litang Lu 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第10期2163-2189,共27页
The cellulose synthase gene superfamily,including Cellulose synthase A(CesA)and cellulose synthase-like(Csl)gene families,is responsible for the synthesis of cellulose and hemicellulose,respectively.The CesA/Csl genes... The cellulose synthase gene superfamily,including Cellulose synthase A(CesA)and cellulose synthase-like(Csl)gene families,is responsible for the synthesis of cellulose and hemicellulose,respectively.The CesA/Csl genes are vital for abiotic stress resistance and shoot tenderness regulation of tea plants(Camellia sinensis).However,the CesA/Csl gene family has not been extensively studied in tea plants.Here,we identified 53 CsCesA/Csl genes in tea plants.These genes were grouped into five subfamilies(CsCesA,CsCslB,CsCslD,CsCslE,CsCslG)based on the phylogenetic relationships with Arabidopsis and rice.The analysis of chromosome distribution,gene structure,protein domain and motif revealed that most genes in CsCesA,CsCslD and CsCslE subfamilies were conserved,whereas CsCslB and CsCslG subfamily members are highly diverged.The transcriptome analysis showed that most CsCesA/Csl genes displayed tissue-specific expression pattern.In addition,members of CsCslB4,CsCesA1/3/6,CsCslB3/4,CsCslD3,CsCslE1 and CsCslG2/3 subfamilies were up-regulated under drought and cold stresses,indicating their potential roles in regulating stress tolerance in tea plants.Furthermore,the expression levels of CsCslG2_6 and CsCslD3_5 in different tissues and cultivars,respectively,were positively correlated with the cellulose content that is negatively related with shoot tenderness.Thus,these two genes were speculated to be involved in the regulation of shoot tenderness in tea plants.Our findings may help elucidate the evolutionary relationships and expression patterns of the CsCesA/Csl genes in tea plants,and provide more candidate genes responsible for stress tolerance and tenderness regulation in tea plants for future functional research. 展开更多
关键词 tea plant(Camellia sinensis) cellulose synthase superfamily PHYLOGENY stress resistance shoot tenderness regulation
下载PDF
上一页 1 2 96 下一页 到第
使用帮助 返回顶部