利用NCEP/NCAR逐6 h 1°×1°全球分析资料、地面自动气象站资料等,从环流形势及主要物理量特征等对2018年首个登陆广东的台风"艾云尼"(1804号)给肇庆地区造成大雨到暴雨、局部大暴雨的天气过程原因进行分析。结...利用NCEP/NCAR逐6 h 1°×1°全球分析资料、地面自动气象站资料等,从环流形势及主要物理量特征等对2018年首个登陆广东的台风"艾云尼"(1804号)给肇庆地区造成大雨到暴雨、局部大暴雨的天气过程原因进行分析。结果表明:菲律宾东面的热带低压加强,迫使副高东退,"艾云尼"处在弱的引导气流中,移动缓慢,降水时间较长;南海季风输送的暖湿气流、菲律宾以东洋面偏东气流和90°E越赤道北上气流为台风输送高温高湿的水汽,为暴雨产生提供了充沛的水汽;高层辐散、低层辐合,上升运动深厚而强盛,为暴雨的产生提供良好的动力条件;弱冷空气的侵入使斜压性增强,冷暖气流的对峙有利于降水幅度的增加。展开更多
The impacts of the enhanced model's moist physics and horizontal resolution upon the QPFs (quantitative precipitation forecasts)are investigated by applying the HIRLAM(high resolution limited area model)to the sum...The impacts of the enhanced model's moist physics and horizontal resolution upon the QPFs (quantitative precipitation forecasts)are investigated by applying the HIRLAM(high resolution limited area model)to the summer heavy-rain cases in China.The performance of the control run, for which a 0.5°×0.5°grid spacing and a traditional“grid-box supersaturation removal+Kuo type convective paramerization”are used as the moist physics,is compared with that of the sensitivity runs with an enhanced model's moist physics(Sundqvist scheme)and an increased horizontal resolution(0.25°×0.25°),respectively.The results show: (1)The enhanced moist physics scheme(Sundqvist scheme),by introducing the cloud water content as an additional prognostic variable and taking into account briefly of the microphysics involved in the cloud-rain conversion,does bring improvements in the model's QPFs.Although the deteriorated QPFs also occur occasionally,the improvements are found in the majority of the cases,indicating the great potential for the improvement of QPFs by enhancing the model's moist physics. (2)By increasing the model's horizontal resolution from 0.5°×0.5°,which is already quite high compared with that of the conventional atmospheric soundings,to 0.25°×0.25°without the simultaneous enhancement in model physics and objective analysis,the improvements in QPFs are very limited.With higher resolution,although slight amelioration in locating the rainfall centers and in resolving some finer structures of precipitation pattern are made,the number of the mis- predicted fine structures in rainfall field increases with the enhanced model resolution as well.展开更多
文摘利用NCEP/NCAR逐6 h 1°×1°全球分析资料、地面自动气象站资料等,从环流形势及主要物理量特征等对2018年首个登陆广东的台风"艾云尼"(1804号)给肇庆地区造成大雨到暴雨、局部大暴雨的天气过程原因进行分析。结果表明:菲律宾东面的热带低压加强,迫使副高东退,"艾云尼"处在弱的引导气流中,移动缓慢,降水时间较长;南海季风输送的暖湿气流、菲律宾以东洋面偏东气流和90°E越赤道北上气流为台风输送高温高湿的水汽,为暴雨产生提供了充沛的水汽;高层辐散、低层辐合,上升运动深厚而强盛,为暴雨的产生提供良好的动力条件;弱冷空气的侵入使斜压性增强,冷暖气流的对峙有利于降水幅度的增加。
基金Financially supported by the Chinese State Education Committee's Research Foundation for scholars returning from abroad and by Danish Government's Danida Foundation.
文摘The impacts of the enhanced model's moist physics and horizontal resolution upon the QPFs (quantitative precipitation forecasts)are investigated by applying the HIRLAM(high resolution limited area model)to the summer heavy-rain cases in China.The performance of the control run, for which a 0.5°×0.5°grid spacing and a traditional“grid-box supersaturation removal+Kuo type convective paramerization”are used as the moist physics,is compared with that of the sensitivity runs with an enhanced model's moist physics(Sundqvist scheme)and an increased horizontal resolution(0.25°×0.25°),respectively.The results show: (1)The enhanced moist physics scheme(Sundqvist scheme),by introducing the cloud water content as an additional prognostic variable and taking into account briefly of the microphysics involved in the cloud-rain conversion,does bring improvements in the model's QPFs.Although the deteriorated QPFs also occur occasionally,the improvements are found in the majority of the cases,indicating the great potential for the improvement of QPFs by enhancing the model's moist physics. (2)By increasing the model's horizontal resolution from 0.5°×0.5°,which is already quite high compared with that of the conventional atmospheric soundings,to 0.25°×0.25°without the simultaneous enhancement in model physics and objective analysis,the improvements in QPFs are very limited.With higher resolution,although slight amelioration in locating the rainfall centers and in resolving some finer structures of precipitation pattern are made,the number of the mis- predicted fine structures in rainfall field increases with the enhanced model resolution as well.