The construction of normalized biholomorphic convex mappings in the Reinhardt domain $D_p = \{ (z_1 ,z_2 , \cdots ,z_n ) \in \mathbb{C}^n :\left| {z_1 } \right|^{p_1 } + \left| {z_2 } \right|^{p_2 } + \cdots + \left| ...The construction of normalized biholomorphic convex mappings in the Reinhardt domain $D_p = \{ (z_1 ,z_2 , \cdots ,z_n ) \in \mathbb{C}^n :\left| {z_1 } \right|^{p_1 } + \left| {z_2 } \right|^{p_2 } + \cdots + \left| {z_n } \right|^{p_n } < 1\} $ , p j > 2, j = 1,2,?, n) of ? n is discussed. The authors set up a Decomposition Theorem for such mappings. As a special case, it is proved that, for each such mapping f, the first k-terms of the homogeneous expansion of its j-th component f j , j = 1, 2, ?, n, depends only on z j , where k is the number that satisfies k < min {p 1, p 2,?, p n ≤ k + 1. When p1,p2, ... ,pn → ∞ , this derives the Decomposition Theorem of normalized biholomorphic convex mappings in the polydisc which was gotten by T.J. Suffridge in 1970.展开更多
In this article, the generalized Roper-Suffridge extension operator in Banach spaces for locally biholomorphic mappings is introduced. It is proved that this operator preserves the starlikeness on some domains in Bana...In this article, the generalized Roper-Suffridge extension operator in Banach spaces for locally biholomorphic mappings is introduced. It is proved that this operator preserves the starlikeness on some domains in Banach spaces but does not preserves convexity for some cases. Moreover, the growth theorem, covering theorem, and the radius of starlikeness are discussed. Some results of Roper and Suffridge, Gong and Liu, Graham et al in C^n are extended to Hilbert spaces or Banach spaces.展开更多
In this paper, we consider the following Reinhardt domains. Let M = (M1, M2,..., Mn) : [0,1] → [0,1]^n be a C2-function and Mj(0) = 0, Mj(1) = 1, Mj″ 〉 0, C1jr^pj-1 〈 Mj′(r) 〈 C2jr^pj-1, r∈ (0, 1), ...In this paper, we consider the following Reinhardt domains. Let M = (M1, M2,..., Mn) : [0,1] → [0,1]^n be a C2-function and Mj(0) = 0, Mj(1) = 1, Mj″ 〉 0, C1jr^pj-1 〈 Mj′(r) 〈 C2jr^pj-1, r∈ (0, 1), pj 〉 2, 1 ≤ j ≤ n, 0 〈 C1j 〈 C2j be constants. Define DM={z=(z1,z2,…,Zn)^T∈C^n:n∑j=1 Mj(|zj|)〈1}Then DM C^n is a convex Reinhardt domain. We give an extension theorem for a normalized biholomorphic convex mapping f : DM -→ C^n.展开更多
基金This work was supported by 973 Project, the National Natural Science Foundation of China (Grant No. 19871081) the Natural Science Foundation of Guangdong Province and Anhui Province.
文摘The construction of normalized biholomorphic convex mappings in the Reinhardt domain $D_p = \{ (z_1 ,z_2 , \cdots ,z_n ) \in \mathbb{C}^n :\left| {z_1 } \right|^{p_1 } + \left| {z_2 } \right|^{p_2 } + \cdots + \left| {z_n } \right|^{p_n } < 1\} $ , p j > 2, j = 1,2,?, n) of ? n is discussed. The authors set up a Decomposition Theorem for such mappings. As a special case, it is proved that, for each such mapping f, the first k-terms of the homogeneous expansion of its j-th component f j , j = 1, 2, ?, n, depends only on z j , where k is the number that satisfies k < min {p 1, p 2,?, p n ≤ k + 1. When p1,p2, ... ,pn → ∞ , this derives the Decomposition Theorem of normalized biholomorphic convex mappings in the polydisc which was gotten by T.J. Suffridge in 1970.
基金This research is partly supported by the National Natural Science Foundation of China (10471048) the Doctoral Foundation of the Education Committee of China(20050574002)+1 种基金 the Natural Science Foundation of Fujian Province, China (Z0511013)the Education Commission Foundation of Fujian Province, China (JB04038)
文摘In this article, the generalized Roper-Suffridge extension operator in Banach spaces for locally biholomorphic mappings is introduced. It is proved that this operator preserves the starlikeness on some domains in Banach spaces but does not preserves convexity for some cases. Moreover, the growth theorem, covering theorem, and the radius of starlikeness are discussed. Some results of Roper and Suffridge, Gong and Liu, Graham et al in C^n are extended to Hilbert spaces or Banach spaces.
基金the Natural Science Foundation of China (Grant No.10671194 and 10731080/A01010501)
文摘In this paper, we consider the following Reinhardt domains. Let M = (M1, M2,..., Mn) : [0,1] → [0,1]^n be a C2-function and Mj(0) = 0, Mj(1) = 1, Mj″ 〉 0, C1jr^pj-1 〈 Mj′(r) 〈 C2jr^pj-1, r∈ (0, 1), pj 〉 2, 1 ≤ j ≤ n, 0 〈 C1j 〈 C2j be constants. Define DM={z=(z1,z2,…,Zn)^T∈C^n:n∑j=1 Mj(|zj|)〈1}Then DM C^n is a convex Reinhardt domain. We give an extension theorem for a normalized biholomorphic convex mapping f : DM -→ C^n.