期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
On Decomposition Theorem of normalized biholomorphic convex mappings in Reinhardt domains 被引量:30
1
作者 张文俊 刘太顺 《Science China Mathematics》 SCIE 2003年第1期94-106,共13页
The construction of normalized biholomorphic convex mappings in the Reinhardt domain $D_p = \{ (z_1 ,z_2 , \cdots ,z_n ) \in \mathbb{C}^n :\left| {z_1 } \right|^{p_1 } + \left| {z_2 } \right|^{p_2 } + \cdots + \left| ... The construction of normalized biholomorphic convex mappings in the Reinhardt domain $D_p = \{ (z_1 ,z_2 , \cdots ,z_n ) \in \mathbb{C}^n :\left| {z_1 } \right|^{p_1 } + \left| {z_2 } \right|^{p_2 } + \cdots + \left| {z_n } \right|^{p_n } < 1\} $ , p j > 2, j = 1,2,?, n) of ? n is discussed. The authors set up a Decomposition Theorem for such mappings. As a special case, it is proved that, for each such mapping f, the first k-terms of the homogeneous expansion of its j-th component f j , j = 1, 2, ?, n, depends only on z j , where k is the number that satisfies k < min {p 1, p 2,?, p n ≤ k + 1. When p1,p2, ... ,pn → ∞ , this derives the Decomposition Theorem of normalized biholomorphic convex mappings in the polydisc which was gotten by T.J. Suffridge in 1970. 展开更多
关键词 Reinhardt domain biholomorphic convex mapping Schwarz Lemma Schwarz Lemma
原文传递
THE EXTENSION OPERATOR IN BANACH SPACES FOR LOCALLY BIHOLOMORPHIC MAPPINGS 被引量:5
2
作者 刘名生 朱玉灿 《Acta Mathematica Scientia》 SCIE CSCD 2008年第3期711-720,共10页
In this article, the generalized Roper-Suffridge extension operator in Banach spaces for locally biholomorphic mappings is introduced. It is proved that this operator preserves the starlikeness on some domains in Bana... In this article, the generalized Roper-Suffridge extension operator in Banach spaces for locally biholomorphic mappings is introduced. It is proved that this operator preserves the starlikeness on some domains in Banach spaces but does not preserves convexity for some cases. Moreover, the growth theorem, covering theorem, and the radius of starlikeness are discussed. Some results of Roper and Suffridge, Gong and Liu, Graham et al in C^n are extended to Hilbert spaces or Banach spaces. 展开更多
关键词 biholomorphic starlike mapping biholomorphic convex mapping the Roper-Suffridge extension operator
下载PDF
Convex Mappings on Some Reinhardt Domains 被引量:1
3
作者 Yi HONG Wen Ge CHEN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第12期2021-2028,共8页
In this paper, we consider the following Reinhardt domains. Let M = (M1, M2,..., Mn) : [0,1] → [0,1]^n be a C2-function and Mj(0) = 0, Mj(1) = 1, Mj″ 〉 0, C1jr^pj-1 〈 Mj′(r) 〈 C2jr^pj-1, r∈ (0, 1), ... In this paper, we consider the following Reinhardt domains. Let M = (M1, M2,..., Mn) : [0,1] → [0,1]^n be a C2-function and Mj(0) = 0, Mj(1) = 1, Mj″ 〉 0, C1jr^pj-1 〈 Mj′(r) 〈 C2jr^pj-1, r∈ (0, 1), pj 〉 2, 1 ≤ j ≤ n, 0 〈 C1j 〈 C2j be constants. Define DM={z=(z1,z2,…,Zn)^T∈C^n:n∑j=1 Mj(|zj|)〈1}Then DM C^n is a convex Reinhardt domain. We give an extension theorem for a normalized biholomorphic convex mapping f : DM -→ C^n. 展开更多
关键词 Reinhardt domain biholomorphic convex mapping Minkowski functional Schwarz lemma
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部