针对超分辨率重构字典对结构区分度不够、在最优匹配原子搜索中耗时太长的问题,提出了一种多特征联合的分级字典(MFJD).首先,分别用边缘块梯度特征和纹理块局部二值模式(LBP)特征来构建两种分类字典,用于逼近不同类型结构;其次,采用树...针对超分辨率重构字典对结构区分度不够、在最优匹配原子搜索中耗时太长的问题,提出了一种多特征联合的分级字典(MFJD).首先,分别用边缘块梯度特征和纹理块局部二值模式(LBP)特征来构建两种分类字典,用于逼近不同类型结构;其次,采用树结构来聚类原子,实现同一字典下的快速原子匹配;最后,引入双边总变分(BTV)正则项来约束重构结果.实验表明:与经典稀疏编码超分辨率重构(SCSR)算法相比,MFJD多特征联合的分级字典使重构图像的PSNR值提高了0.2424 d B,使平均结构相似度(MSSIM)和特征相似度(FSIM)分别提高了0.0043和0.0056;由于结构分类字典维数降低,重构时间降至SCSR算法的22.77%.展开更多
针对文档图像超分辨率重建问题,在传统双边全变差(Bilateral Total Variation,BTV)正则化超分辨率算法的基础上,提出了一种基于改进BTV的文档图像超分辨率算法。该算法引入一个新的正则项,即笔画宽度的方向,并根据字符笔画的局部宽度和...针对文档图像超分辨率重建问题,在传统双边全变差(Bilateral Total Variation,BTV)正则化超分辨率算法的基础上,提出了一种基于改进BTV的文档图像超分辨率算法。该算法引入一个新的正则项,即笔画宽度的方向,并根据字符笔画的局部宽度和局部方向自适应地进行平滑处理;然后通过分析输入的低分辨率图像及其插值,使输出图像的局部笔画宽度接近于局部的笔画方向。这种信息被压缩到基于笔画宽度的方向全变分正则项中。通过最小化正则项和数据保真项的线性组合,重建了高分辨率的图像。与相关的文档图像超分辨率方法相比,所提方法在视觉图像质量和字符识别精度方面得到了显著的改善。展开更多
针对超分辨率重建时需要同时滤除高斯噪声和脉冲噪声的问题,提出一种基于L1和L2混合范式并结合双边全变分(BTV)正则化的序列图像超分辨率重建方法。首先基于多分辨率策略的光流场模型对序列低分辨率图像进行配准,使图像的配准精度达到...针对超分辨率重建时需要同时滤除高斯噪声和脉冲噪声的问题,提出一种基于L1和L2混合范式并结合双边全变分(BTV)正则化的序列图像超分辨率重建方法。首先基于多分辨率策略的光流场模型对序列低分辨率图像进行配准,使图像的配准精度达到亚像素级,进而可以利用图像间的互补信息提高图像分辨率;其次利用L1和L2混合范式的优点,用BTV正则化算法解决重建的病态性反问题;最后进行序列图像超分辨率重建。实验数据显示算法可以降低图像均方误差,并将峰值信噪比(PSNR)提高1.2 d B^5.2 d B。实验结果表明,提出的算法能够有效地滤除高斯和脉冲噪声,保持图像边缘,提高图像可辨识度,可为车牌识别、人脸识别和视频监控等方面提供了良好的技术基础。展开更多
针对图像重建的问题,提出了一种基于统计量的加权函数图像重建方法。考虑到退化图像不仅含有高斯噪声,且含有拉普拉斯噪声,利用最大似然估计的思想估计高斯噪声和拉普拉斯噪声的方差构造基于统计量的高斯和拉普拉斯权重函数;由于在图像...针对图像重建的问题,提出了一种基于统计量的加权函数图像重建方法。考虑到退化图像不仅含有高斯噪声,且含有拉普拉斯噪声,利用最大似然估计的思想估计高斯噪声和拉普拉斯噪声的方差构造基于统计量的高斯和拉普拉斯权重函数;由于在图像重建过程中,噪声分布发生变化,整合L_1,L_2范数,设计了一种自适应加权函数;结合双边全变差(BTV)正则化算法,设计了一种自适应加权函数图像恢复方法。实验结果表明:相比基于L_1-L_2混合误差模型(HEM),方法的峰值信噪比(PSNR)和结构相似度(SSIM)分别平均提高了约2.07 d B,0.02,对含有多种噪声的退化图像能够取得比较理想的结果。展开更多
针对一般正则化方法不能有效解决非线性成像和高动态成像的系统退化恢复问题,提出一种非线性图像恢复方法,该方法利用乘数交替方向法解决双边全变差(bilateral total variation,BTV)模型的正则化项不平滑问题。建立包含复原图像的非线...针对一般正则化方法不能有效解决非线性成像和高动态成像的系统退化恢复问题,提出一种非线性图像恢复方法,该方法利用乘数交替方向法解决双边全变差(bilateral total variation,BTV)模型的正则化项不平滑问题。建立包含复原图像的非线性最小二乘数据拟合项和BTV正则化项的目标函数;对目标函数进行优化;构建一套有效的乘数交替方向法(multiplier alternating direction method,MADM)求解提出的模型。利用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性度量(structural similarity index measurement,SSIM)评估图像恢复结果。对于非线性成像系统退化,提出的方法在PSNR和SSIM方面比基于TV(total variation)模型的方法分别提高4.5%和4.1%。对于高动态的成像退化问题,提出的方法获得的恢复图像PSNR值可达61.89 d B,相比其他方法,至少提高了2.9%。此外,该方法的运行时间也至少节省了26%,具有较高的计算效率。展开更多
文摘针对超分辨率重构字典对结构区分度不够、在最优匹配原子搜索中耗时太长的问题,提出了一种多特征联合的分级字典(MFJD).首先,分别用边缘块梯度特征和纹理块局部二值模式(LBP)特征来构建两种分类字典,用于逼近不同类型结构;其次,采用树结构来聚类原子,实现同一字典下的快速原子匹配;最后,引入双边总变分(BTV)正则项来约束重构结果.实验表明:与经典稀疏编码超分辨率重构(SCSR)算法相比,MFJD多特征联合的分级字典使重构图像的PSNR值提高了0.2424 d B,使平均结构相似度(MSSIM)和特征相似度(FSIM)分别提高了0.0043和0.0056;由于结构分类字典维数降低,重构时间降至SCSR算法的22.77%.
文摘针对文档图像超分辨率重建问题,在传统双边全变差(Bilateral Total Variation,BTV)正则化超分辨率算法的基础上,提出了一种基于改进BTV的文档图像超分辨率算法。该算法引入一个新的正则项,即笔画宽度的方向,并根据字符笔画的局部宽度和局部方向自适应地进行平滑处理;然后通过分析输入的低分辨率图像及其插值,使输出图像的局部笔画宽度接近于局部的笔画方向。这种信息被压缩到基于笔画宽度的方向全变分正则项中。通过最小化正则项和数据保真项的线性组合,重建了高分辨率的图像。与相关的文档图像超分辨率方法相比,所提方法在视觉图像质量和字符识别精度方面得到了显著的改善。
文摘针对超分辨率重建时需要同时滤除高斯噪声和脉冲噪声的问题,提出一种基于L1和L2混合范式并结合双边全变分(BTV)正则化的序列图像超分辨率重建方法。首先基于多分辨率策略的光流场模型对序列低分辨率图像进行配准,使图像的配准精度达到亚像素级,进而可以利用图像间的互补信息提高图像分辨率;其次利用L1和L2混合范式的优点,用BTV正则化算法解决重建的病态性反问题;最后进行序列图像超分辨率重建。实验数据显示算法可以降低图像均方误差,并将峰值信噪比(PSNR)提高1.2 d B^5.2 d B。实验结果表明,提出的算法能够有效地滤除高斯和脉冲噪声,保持图像边缘,提高图像可辨识度,可为车牌识别、人脸识别和视频监控等方面提供了良好的技术基础。
文摘针对图像重建的问题,提出了一种基于统计量的加权函数图像重建方法。考虑到退化图像不仅含有高斯噪声,且含有拉普拉斯噪声,利用最大似然估计的思想估计高斯噪声和拉普拉斯噪声的方差构造基于统计量的高斯和拉普拉斯权重函数;由于在图像重建过程中,噪声分布发生变化,整合L_1,L_2范数,设计了一种自适应加权函数;结合双边全变差(BTV)正则化算法,设计了一种自适应加权函数图像恢复方法。实验结果表明:相比基于L_1-L_2混合误差模型(HEM),方法的峰值信噪比(PSNR)和结构相似度(SSIM)分别平均提高了约2.07 d B,0.02,对含有多种噪声的退化图像能够取得比较理想的结果。
文摘针对一般正则化方法不能有效解决非线性成像和高动态成像的系统退化恢复问题,提出一种非线性图像恢复方法,该方法利用乘数交替方向法解决双边全变差(bilateral total variation,BTV)模型的正则化项不平滑问题。建立包含复原图像的非线性最小二乘数据拟合项和BTV正则化项的目标函数;对目标函数进行优化;构建一套有效的乘数交替方向法(multiplier alternating direction method,MADM)求解提出的模型。利用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性度量(structural similarity index measurement,SSIM)评估图像恢复结果。对于非线性成像系统退化,提出的方法在PSNR和SSIM方面比基于TV(total variation)模型的方法分别提高4.5%和4.1%。对于高动态的成像退化问题,提出的方法获得的恢复图像PSNR值可达61.89 d B,相比其他方法,至少提高了2.9%。此外,该方法的运行时间也至少节省了26%,具有较高的计算效率。