Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; there...Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipationrelated symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.展开更多
Barrett's esophagus (BE) is characterized by intestinal metaplasia with the differentiated epithelium replaced by another type of epithelium morphologically similar to normal intestinal epithelium. The metaplasia ...Barrett's esophagus (BE) is characterized by intestinal metaplasia with the differentiated epithelium replaced by another type of epithelium morphologically similar to normal intestinal epithelium. The metaplasia is preceded by bile and acid reflux into the esophagus. BE is a premalignant condition associated with increased risk of esophageal cancer, especially esophageal adenocarcinoma. The Caudal-related homeodomain transcription factors Caudal-related homeodomain transcription factor CDX1 and CDX2 are expressed exclusively in the small and large intestine, playing important roles in proliferation and differentiation of intestinal epithelial cells. Ectopic expression of CDX1 and CDX2 occurs in BE. The apical sodium-dependent bile acid transporter (ASBT) is expressed primarily in terminal ileum where it is a key factor for intestinal reabsorption of bile salts. In addition to upregulation of CDX1 and CDX2, ASBT expression is up-regulated in BE. Furthermore, both CDX1/CDX2 and ASBT expressions are down-regulated in high-grade esophageal dysplasia. The alteration of the above-mentioned factors calls for attention: what is the relationship between CDXs and ASBT aberrant expression in BE? In this commentary, we discuss this issue on basis of the recent study done by Ma et al .展开更多
This review considers the physiological and molecular biochemical mechanisms of bile formation.The composition of bile and structure of a bile canaliculus,biosynthesis and conjugation of bile acids,bile phospholipids,...This review considers the physiological and molecular biochemical mechanisms of bile formation.The composition of bile and structure of a bile canaliculus,biosynthesis and conjugation of bile acids,bile phospholipids,formation of bile micellar structures,and enterohepatic circulation of bile acids are described.In general,the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes.Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes,associated with diseases of the liver and biliary tract.展开更多
Obstructive jaundice occurs in patients suffering from cholelithiasis and from neoplasms affecting the pancreas and the common bile duct.The absorption,distribution and elimination of drugs are impaired during this pa...Obstructive jaundice occurs in patients suffering from cholelithiasis and from neoplasms affecting the pancreas and the common bile duct.The absorption,distribution and elimination of drugs are impaired during this pathology.Prolonged cholestasis may alter both liver and kidney function.Lactam antibiotics,diuretics,non-steroidal anti-inflammatory drugs,several antiviral drugs as well as endogenous compounds are classified as organic anions.The hepatic and renal organic anion transport pathways play a key role in the pharmacokinetics of these compounds.It has been demonstrated that acute extrahepatic cholestasis is associated with increased renal elimination of organic anions.The present work describes the molecular mechanisms involved in the regulation of the expression and function of the renal and hepatic organic anion transporters in extrahepatic cholestasis,such as multidrug resistanceassociated protein 2,organic anion transporting polypeptide 1,organic anion transporter 3,bilitranslocase,bromosulfophthalein/bilirubin binding protein,organic anion transporter 1 and sodium dependent bile salt transporter.The modulation in the expression of renal organic anion transporters constitutes a compensatory mechanism to overcome the hepatic dysfunction in the elimination of organic anions.展开更多
Reduction of low-density lipoprotein-cholesterol through statin therapy has only modestly decreased coronary heart disease (CHD)-associated mortality in developed countries, which has prompted the search for alternati...Reduction of low-density lipoprotein-cholesterol through statin therapy has only modestly decreased coronary heart disease (CHD)-associated mortality in developed countries, which has prompted the search for alternative therapeutic strategies for CHD. Major efforts are now focused on therapies that augment high-density lipoprotein (HDL)-mediated reverse cholesterol transport (RCT), and ultimately increase the fecal disposal of cholesterol. The process of RCT has long been thought to simply involve HDL-mediated delivery of peripheral cholesterol to the liver for biliary excretion out of the body. However, recent studies have revealed a novel pathway for RCT that does not rely on biliary secretion. This nonbiliary pathway rather involves the direct excretion of cholesterol by the proximal small intestine. Compared to RCT therapies that augment biliary sterol loss, modulation of non-biliary fecal sterol loss through the intestine is a much more attractive therapeutic strategy, given that excessive biliary cholesterol secretion can promote gallstone formation. However, we are at an early stage in understanding the molecular mechanisms regulating the non-biliary pathway for RCT, and much additional work is required in order to effectively target this pathway for CHD prevention. The purpose of this review is to discuss our current understanding of biliary and nonbiliary contributions to RCT with particular emphasis on the possibility of targeting the intestine as an inducible cholesterol secretory organ.展开更多
AIM: To determine if novel bile acid transporters may be expressed in human tissues. METHODS: SLC10A1 (NTCP) was used as a probe to search the NCBI database for homology to previously uncharacterized ESTs. The homolog...AIM: To determine if novel bile acid transporters may be expressed in human tissues. METHODS: SLC10A1 (NTCP) was used as a probe to search the NCBI database for homology to previously uncharacterized ESTs. The homology search identified an EST (termed SLC10A4) that shares sequence identity with SLC10A1 and SLC10A2 (ASBT). We performed Northern blot analysis and RT-PCR to determine the tissue distribution of SLC10A4. SLC10A4 was cloned in frame with an epitope tag and overexpressed in CHO cells to determine cellular localization and functional analysis of bile acid uptake. RESULTS: Northern analysis revealed that SLC10A4 mRNA is ubiquitously expressed in human tissues with the highest levels of mRNA expression in brain, placenta, and liver. In SLC10A4-transfected CHO cells, immunoblotting analysis and immunofluorescence staining demonstrated a 49-kDa protein that is expressed at the plasma membrane and intracellular compartments. Functional analysis of SLC10A4 showed no significant taurocholate uptake in the presence of sodium when compared to untransfected CHO cells. CONCLUSION: To date, we have shown that this protein has no capacity to transport taurocholate relative to SLC10A1; however, given its ubiquitous tissue distribution, it may play a more active role in transporting other endogenous organic anions.展开更多
目的利福平(Rifampicin,RIF)具有肝毒性,但其机制尚不清楚。本研究在RIF诱导的肝内胆汁淤积小鼠中,探讨RIF对肝细胞胆汁酸转运体胆汁酸输出泵(bile salt exportpump,Bsep)和多药抵抗相关蛋白-2(multidrug resistance-associated protein...目的利福平(Rifampicin,RIF)具有肝毒性,但其机制尚不清楚。本研究在RIF诱导的肝内胆汁淤积小鼠中,探讨RIF对肝细胞胆汁酸转运体胆汁酸输出泵(bile salt exportpump,Bsep)和多药抵抗相关蛋白-2(multidrug resistance-associated protein-2,Mrp2)表达和定位影响。方法 48只♀ICR小鼠随机分为4组,RIF1wk组:经灌胃给予RIF(200mg.kg-1.d-1),连续1周,于末次给药后6h取材;RIF6h组:单次灌胃给予RIF(200mg.kg-1)后6h取材;RIF1周对照组(CON1wk)与RIF6h对照组(CON6h):经灌胃给予等容积生理盐水。所有小鼠均收集血液和肝组织,常规生化检测血清丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、碱性磷酸酶(ALP)、总胆红素(TB)和结合胆红素(DB),并检测小鼠血清和肝组织总胆汁酸(TBA)水平。HE染色分析肝组织病理改变。RT-PCR测定肝脏肝细胞胆汁酸转运体Bsep和Mrp2mRNA表达。免疫荧光法分析Bsep和Mrp2在肝细胞的位置。结果给予RIF1周后,小鼠血清TB由(1.25±0.69)μmol.L-1上升至(65.73±12.08)μmol.L-1,上升近70倍,DB由(0.77±0.40)μmol.L-1上升至(53.33±12.43)μmol.L-1,上升约80倍,ALP由(110.2±13.8)U.L-1上升至(279.5±80.4)U.L-1,上升约1.5倍,TBA由(3.15±0.89)μmol.L-1上升至(13.54±6.51)μmol.L-1,上升约5倍并伴有血清ALT和AST轻度升高;肝脏组织TBA由(0.15±0.04)μmol.g-1liver上升至(0.30±0.19)μmol.g-1liver,上升约2倍;肝脏组织HE染色显示肝细胞出现脂肪变性、轻度坏死和炎症。单次给予RIF6h后血清TB、DB、ALP、ALT、AST和TBA明显上升,但未观察到小鼠肝脏组织病理发生改变。免疫荧光分析显示,给予小鼠RIF1wk与单次给予RIF6h后肝细胞中Bsep和Mrp2的定位发生了改变。而无论单次给予RIF还是连续给药1周,肝细胞Bsep和Mrp2mRNA表达水平均未发生变化。结论肝细胞胆汁酸转运体Bsep和Mrp2定位改变可能是RIF诱发肝内胆汁淤积的重要机制。展开更多
基金Supported by Iuventus Plus program of the Polish Ministry of Science and Higher Education,No.0107/IP1/2013/72(to JF)the grant from the Medical University of Lodz,No.503/1-156-04/503-01
文摘Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipationrelated symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.
文摘Barrett's esophagus (BE) is characterized by intestinal metaplasia with the differentiated epithelium replaced by another type of epithelium morphologically similar to normal intestinal epithelium. The metaplasia is preceded by bile and acid reflux into the esophagus. BE is a premalignant condition associated with increased risk of esophageal cancer, especially esophageal adenocarcinoma. The Caudal-related homeodomain transcription factors Caudal-related homeodomain transcription factor CDX1 and CDX2 are expressed exclusively in the small and large intestine, playing important roles in proliferation and differentiation of intestinal epithelial cells. Ectopic expression of CDX1 and CDX2 occurs in BE. The apical sodium-dependent bile acid transporter (ASBT) is expressed primarily in terminal ileum where it is a key factor for intestinal reabsorption of bile salts. In addition to upregulation of CDX1 and CDX2, ASBT expression is up-regulated in BE. Furthermore, both CDX1/CDX2 and ASBT expressions are down-regulated in high-grade esophageal dysplasia. The alteration of the above-mentioned factors calls for attention: what is the relationship between CDXs and ASBT aberrant expression in BE? In this commentary, we discuss this issue on basis of the recent study done by Ma et al .
文摘This review considers the physiological and molecular biochemical mechanisms of bile formation.The composition of bile and structure of a bile canaliculus,biosynthesis and conjugation of bile acids,bile phospholipids,formation of bile micellar structures,and enterohepatic circulation of bile acids are described.In general,the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes.Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes,associated with diseases of the liver and biliary tract.
基金Supported by Grants from FONCYT(PICT 2007,No.00966, PICT 2010,No.2127)CONICET(PIP 2009-2011,No.1665, PIP2012-2015,No.00014)UNR PID(2008-2011/2012-2015)
文摘Obstructive jaundice occurs in patients suffering from cholelithiasis and from neoplasms affecting the pancreas and the common bile duct.The absorption,distribution and elimination of drugs are impaired during this pathology.Prolonged cholestasis may alter both liver and kidney function.Lactam antibiotics,diuretics,non-steroidal anti-inflammatory drugs,several antiviral drugs as well as endogenous compounds are classified as organic anions.The hepatic and renal organic anion transport pathways play a key role in the pharmacokinetics of these compounds.It has been demonstrated that acute extrahepatic cholestasis is associated with increased renal elimination of organic anions.The present work describes the molecular mechanisms involved in the regulation of the expression and function of the renal and hepatic organic anion transporters in extrahepatic cholestasis,such as multidrug resistanceassociated protein 2,organic anion transporting polypeptide 1,organic anion transporter 3,bilitranslocase,bromosulfophthalein/bilirubin binding protein,organic anion transporter 1 and sodium dependent bile salt transporter.The modulation in the expression of renal organic anion transporters constitutes a compensatory mechanism to overcome the hepatic dysfunction in the elimination of organic anions.
基金Supported by Pathway to Independence Grants (5R00HL088528 to Temel RE and 1K99-HL096166 to Brown JM) from the National Heart, Lung, and Blood Institute
文摘Reduction of low-density lipoprotein-cholesterol through statin therapy has only modestly decreased coronary heart disease (CHD)-associated mortality in developed countries, which has prompted the search for alternative therapeutic strategies for CHD. Major efforts are now focused on therapies that augment high-density lipoprotein (HDL)-mediated reverse cholesterol transport (RCT), and ultimately increase the fecal disposal of cholesterol. The process of RCT has long been thought to simply involve HDL-mediated delivery of peripheral cholesterol to the liver for biliary excretion out of the body. However, recent studies have revealed a novel pathway for RCT that does not rely on biliary secretion. This nonbiliary pathway rather involves the direct excretion of cholesterol by the proximal small intestine. Compared to RCT therapies that augment biliary sterol loss, modulation of non-biliary fecal sterol loss through the intestine is a much more attractive therapeutic strategy, given that excessive biliary cholesterol secretion can promote gallstone formation. However, we are at an early stage in understanding the molecular mechanisms regulating the non-biliary pathway for RCT, and much additional work is required in order to effectively target this pathway for CHD prevention. The purpose of this review is to discuss our current understanding of biliary and nonbiliary contributions to RCT with particular emphasis on the possibility of targeting the intestine as an inducible cholesterol secretory organ.
基金Supported by National Institutes of Health Grant DK24031 (to NF. L.) and by the Mayo Foundation
文摘AIM: To determine if novel bile acid transporters may be expressed in human tissues. METHODS: SLC10A1 (NTCP) was used as a probe to search the NCBI database for homology to previously uncharacterized ESTs. The homology search identified an EST (termed SLC10A4) that shares sequence identity with SLC10A1 and SLC10A2 (ASBT). We performed Northern blot analysis and RT-PCR to determine the tissue distribution of SLC10A4. SLC10A4 was cloned in frame with an epitope tag and overexpressed in CHO cells to determine cellular localization and functional analysis of bile acid uptake. RESULTS: Northern analysis revealed that SLC10A4 mRNA is ubiquitously expressed in human tissues with the highest levels of mRNA expression in brain, placenta, and liver. In SLC10A4-transfected CHO cells, immunoblotting analysis and immunofluorescence staining demonstrated a 49-kDa protein that is expressed at the plasma membrane and intracellular compartments. Functional analysis of SLC10A4 showed no significant taurocholate uptake in the presence of sodium when compared to untransfected CHO cells. CONCLUSION: To date, we have shown that this protein has no capacity to transport taurocholate relative to SLC10A1; however, given its ubiquitous tissue distribution, it may play a more active role in transporting other endogenous organic anions.