This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton)...This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.展开更多
With Hirota's bilinear direct method, we study the special coupled KdV system to obtain its new soliton solutions. Then we further discuss soliton evolution, corresponding structures, and interesting interactive phen...With Hirota's bilinear direct method, we study the special coupled KdV system to obtain its new soliton solutions. Then we further discuss soliton evolution, corresponding structures, and interesting interactive phenomena in detail with plot. As a result, we find that after the interaction, the solitons make elastic collision and there are no exchanges of their physical quantities including energy, velocity and shape except the phase shift.展开更多
We present a systematic procedure to derive discrete analogues of integrable PDEs via Hirota’s bilinear method.This approach is mainly based on the compatibility between an integrable system and its B¨acklund tr...We present a systematic procedure to derive discrete analogues of integrable PDEs via Hirota’s bilinear method.This approach is mainly based on the compatibility between an integrable system and its B¨acklund transformation.We apply this procedure to several equations,including the extended Korteweg-deVries(Kd V)equation,the extended Kadomtsev-Petviashvili(KP)equation,the extended Boussinesq equation,the extended Sawada-Kotera(SK)equation and the extended Ito equation,and obtain their associated semidiscrete analogues.In the continuum limit,these differential-difference systems converge to their corresponding smooth equations.For these new integrable systems,their B¨acklund transformations and Lax pairs are derived.展开更多
This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original va...This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original variables and Lagrange multipliers.Without strict complementarity,the convergence of the method is studied by means of theories of semismooth analysis under the linear independence constraint qualification and strong second order sufficient condition.At last,numerical results are reported to show the performance of the proposed method.展开更多
Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic...Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.展开更多
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ...In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.展开更多
In this paper, some exact solutions of the (3 + 1)-dimensional variable-coefficient Yu-Toda-Sasa-Fukuyama equation are investigated. By using Hirota’s direct method and symbolic computation, we obtained N-soliton sol...In this paper, some exact solutions of the (3 + 1)-dimensional variable-coefficient Yu-Toda-Sasa-Fukuyama equation are investigated. By using Hirota’s direct method and symbolic computation, we obtained N-soliton solution. By using the long wave limit method, the N-order rational solution can be obtained from N-order soliton solution. Then, through the paired complexification of parameters, the lump solution is obtained from N-order rational solution. Meanwhile, we obtained a hybrid solution between 1-lump solution and N-soliton (N=1,2) by using the long wave limit method and parameter complex. Furthermore, four different sets of three-dimensional graphs of solitons, lump solutions and hybrid solutions are drawn by selecting four different sets of coefficient functions which include one set of constant coefficient function and three sets of variable coefficient functions.展开更多
Investigated in this paper is the generalized nonlinear Schrodinger equation with radial symmetry. With the help of symbolic computation, the one-, two-, and N-soliton solutions are obtained through the bilinear metho...Investigated in this paper is the generalized nonlinear Schrodinger equation with radial symmetry. With the help of symbolic computation, the one-, two-, and N-soliton solutions are obtained through the bilinear method. B^cklund transformation in the bilinear form is presented, through which a new solution is constructed. Graphically, we have found that the solitons are symmetric about x = O, while the soliton pulse width and amplitude will change along with the distance and time during the propagation.展开更多
Based on the Hirota bilinear and long wave limit methods,the hybrid solutions of m-lump with n-soliton and nbreather wave for generalized Hirota–Satsuma–Ito(GHSI)equation are constructed.Then,by approximating soluti...Based on the Hirota bilinear and long wave limit methods,the hybrid solutions of m-lump with n-soliton and nbreather wave for generalized Hirota–Satsuma–Ito(GHSI)equation are constructed.Then,by approximating solutions of the GHSI equation along some parallel orbits at infinity,the trajectory equation of a lump wave before and after collisions with n-soliton and n-breather wave are studied,and the expressions of phase shift for lump wave before and after collisions are given.Furthermore,it is revealed that collisions between the lump wave and other waves are elastic,the corresponding collision diagrams are used to further explain.展开更多
We study a coupled Schrödinger equation which is started from the Boussinesq equation of atmospheric gravity waves by using multiscale analysis and reduced perturbation method.For the coupled Schrödinger equ...We study a coupled Schrödinger equation which is started from the Boussinesq equation of atmospheric gravity waves by using multiscale analysis and reduced perturbation method.For the coupled Schrödinger equation,we obtain the Manakov model of all-focusing,all-defocusing and mixed types by setting parameters value and apply the Hirota bilinear approach to provide the two-soliton and three-soliton solutions.Especially,we find that the all-defocusing type Manakov model admits bright-bright soliton solutions.Furthermore,we find that the all-defocusing type Manakov model admits bright-bright-bright soliton solutions.Therefrom,we go over how the free parameters affect the Manakov model’s allfocusing type’s two-soliton and three-soliton solutions’collision locations,propagation directions,and wave amplitudes.These findings are useful for setting a simulation scene in Rossby waves research.The answers we have found are helpful for studying physical properties of the equation in Rossby waves.展开更多
We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive qua...We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive quadratic functions,the exponential and hyperbolic functions.According to the known lump solution in the outset,we obtained the superposition formulas of positive quadratic functions by plausible reasoning.Next,we constructed the interaction solutions between the localized solutions and the exponential function solutions with the similar theory.These two kinds of solutions contained superposition formulas of positive quadratic functions,which were turned into general ternary quadratic functions,the coefficients of which were all rational operation of vector inner product.Then we obtained linear superposition formulas of exponential and hyperbolic function solutions.Finally,for aforementioned various solutions,their dynamic properties were showed by choosing specific values for parameters.From concrete plots,we observed wave characteristics of three kinds of solutions.Especially,we could observe distinct generation and separation situations when the localized wave and the stripe wave interacted at different time points.展开更多
Based on the direct method of calculating the periodic wave solution proposed by Nakamura,we give an approximate analytical three-periodic solutions of Korteweg-de Vries(KdV)-type equations by perturbation method for ...Based on the direct method of calculating the periodic wave solution proposed by Nakamura,we give an approximate analytical three-periodic solutions of Korteweg-de Vries(KdV)-type equations by perturbation method for the first time.Limit methods have been used to establish the asymptotic relationships between the three-periodic solution separately and another three solutions,the soliton solution,the one-and the two-periodic solutions.Furthermore,it is found that the asymptotic three-soliton solution presents the same repulsive phenomenon as the asymptotic three-soliton solution during the interaction.展开更多
Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions be...Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.展开更多
This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé...This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10871117 and 10571110)
文摘This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.
文摘With Hirota's bilinear direct method, we study the special coupled KdV system to obtain its new soliton solutions. Then we further discuss soliton evolution, corresponding structures, and interesting interactive phenomena in detail with plot. As a result, we find that after the interaction, the solitons make elastic collision and there are no exchanges of their physical quantities including energy, velocity and shape except the phase shift.
基金supported by National Natural Science Foundation of China(Grant Nos.11331008 and 11201425)the Hong Kong Baptist University Faculty Research(Grant No.FRG2/11-12/065)the Hong Kong Research Grant Council(Grant No.GRF HKBU202512)
文摘We present a systematic procedure to derive discrete analogues of integrable PDEs via Hirota’s bilinear method.This approach is mainly based on the compatibility between an integrable system and its B¨acklund transformation.We apply this procedure to several equations,including the extended Korteweg-deVries(Kd V)equation,the extended Kadomtsev-Petviashvili(KP)equation,the extended Boussinesq equation,the extended Sawada-Kotera(SK)equation and the extended Ito equation,and obtain their associated semidiscrete analogues.In the continuum limit,these differential-difference systems converge to their corresponding smooth equations.For these new integrable systems,their B¨acklund transformations and Lax pairs are derived.
基金Supported by the National Natural Science Foundation of China(No.11671183)the Fundamental Research Funds for the Central Universities(No.2018IB016,2019IA004,No.2019IB010)
文摘This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original variables and Lagrange multipliers.Without strict complementarity,the convergence of the method is studied by means of theories of semismooth analysis under the linear independence constraint qualification and strong second order sufficient condition.At last,numerical results are reported to show the performance of the proposed method.
基金Supported by the National Natural Science Foundation of China(12275172)。
文摘Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.
文摘In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.
文摘In this paper, some exact solutions of the (3 + 1)-dimensional variable-coefficient Yu-Toda-Sasa-Fukuyama equation are investigated. By using Hirota’s direct method and symbolic computation, we obtained N-soliton solution. By using the long wave limit method, the N-order rational solution can be obtained from N-order soliton solution. Then, through the paired complexification of parameters, the lump solution is obtained from N-order rational solution. Meanwhile, we obtained a hybrid solution between 1-lump solution and N-soliton (N=1,2) by using the long wave limit method and parameter complex. Furthermore, four different sets of three-dimensional graphs of solitons, lump solutions and hybrid solutions are drawn by selecting four different sets of coefficient functions which include one set of constant coefficient function and three sets of variable coefficient functions.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund (No.BUAASKLSDE-09KF-04)+2 种基金Supported Project (No.SKLSDE-2010ZX-07) of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China (973 Program) under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘Investigated in this paper is the generalized nonlinear Schrodinger equation with radial symmetry. With the help of symbolic computation, the one-, two-, and N-soliton solutions are obtained through the bilinear method. B^cklund transformation in the bilinear form is presented, through which a new solution is constructed. Graphically, we have found that the solitons are symmetric about x = O, while the soliton pulse width and amplitude will change along with the distance and time during the propagation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12001424 and 12271324)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2021JZ-21)+1 种基金the Chinese Post Doctoral Science Foundation(Grant No.2020M673332)the Three-year Action Plan Project of Xi’an University(Grant No.2021XDJH01)。
文摘Based on the Hirota bilinear and long wave limit methods,the hybrid solutions of m-lump with n-soliton and nbreather wave for generalized Hirota–Satsuma–Ito(GHSI)equation are constructed.Then,by approximating solutions of the GHSI equation along some parallel orbits at infinity,the trajectory equation of a lump wave before and after collisions with n-soliton and n-breather wave are studied,and the expressions of phase shift for lump wave before and after collisions are given.Furthermore,it is revealed that collisions between the lump wave and other waves are elastic,the corresponding collision diagrams are used to further explain.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12102205 and 12161065)the Scientific Research Ability of Youth Teachers of Inner Mongolia Agricultural University(Grant Nos.JC2021001 and BR220126)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2022QN01003)the Research Program of Inner Mongolia Autonomous Region Education Department(Grant Nos.NJYT23099 and NMGIRT2208).
文摘We study a coupled Schrödinger equation which is started from the Boussinesq equation of atmospheric gravity waves by using multiscale analysis and reduced perturbation method.For the coupled Schrödinger equation,we obtain the Manakov model of all-focusing,all-defocusing and mixed types by setting parameters value and apply the Hirota bilinear approach to provide the two-soliton and three-soliton solutions.Especially,we find that the all-defocusing type Manakov model admits bright-bright soliton solutions.Furthermore,we find that the all-defocusing type Manakov model admits bright-bright-bright soliton solutions.Therefrom,we go over how the free parameters affect the Manakov model’s allfocusing type’s two-soliton and three-soliton solutions’collision locations,propagation directions,and wave amplitudes.These findings are useful for setting a simulation scene in Rossby waves research.The answers we have found are helpful for studying physical properties of the equation in Rossby waves.
基金the National Natural Science Foundation of China(Grant No.12061054)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region of China(Grant No.NJYT-20A06)。
文摘We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive quadratic functions,the exponential and hyperbolic functions.According to the known lump solution in the outset,we obtained the superposition formulas of positive quadratic functions by plausible reasoning.Next,we constructed the interaction solutions between the localized solutions and the exponential function solutions with the similar theory.These two kinds of solutions contained superposition formulas of positive quadratic functions,which were turned into general ternary quadratic functions,the coefficients of which were all rational operation of vector inner product.Then we obtained linear superposition formulas of exponential and hyperbolic function solutions.Finally,for aforementioned various solutions,their dynamic properties were showed by choosing specific values for parameters.From concrete plots,we observed wave characteristics of three kinds of solutions.Especially,we could observe distinct generation and separation situations when the localized wave and the stripe wave interacted at different time points.
基金the National National Science Foundation of China(Grant Nos.52171251,U2106225,and 52231011)the Science and Technology Innovation Fund of Dalian City(Grant No.2022JJ12GX036)。
文摘Based on the direct method of calculating the periodic wave solution proposed by Nakamura,we give an approximate analytical three-periodic solutions of Korteweg-de Vries(KdV)-type equations by perturbation method for the first time.Limit methods have been used to establish the asymptotic relationships between the three-periodic solution separately and another three solutions,the soliton solution,the one-and the two-periodic solutions.Furthermore,it is found that the asymptotic three-soliton solution presents the same repulsive phenomenon as the asymptotic three-soliton solution during the interaction.
文摘Based on the Hirota bilinear method,the second extended(3+1)-dimensional Jimbo–Miwa equation is established.By Maple symbolic calculation,lump and lump-kink soliton solutions are obtained.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions.Furthermore,periodiclump wave solution is derived via the ansatz including hyperbolic and trigonometric functions.Finally,3D plots,2D curves,density plots,and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11505090)Research Award Foundation for Outstanding Young Scientists of Shandong Province(Grant No.BS2015SF009)+2 种基金the Doctoral Foundation of Liaocheng University(Grant No.318051413)Liaocheng University Level Science and Technology Research Fund(Grant No.318012018)Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology(Grant No.319462208).
文摘This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.