期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
In-situ constructing Cu_(1)Bi_(1)bimetallic catalyst to promote the electroreduction of CO_(2)to formate by synergistic electronic and geometric effects 被引量:2
1
作者 Houan Ren Xiaoyu Wang +5 位作者 Xiaomei Zhou Teng Wang Yuping Liu Cai Wang Qingxin Guan Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期263-271,共9页
Electrochemical CO_(2)reduction to formate is a potential approach to achieving global carbon neutrality.Here,Cu1Bi1bimetallic catalyst was prepared by a co-precipitation method.It has a ginger like composite structur... Electrochemical CO_(2)reduction to formate is a potential approach to achieving global carbon neutrality.Here,Cu1Bi1bimetallic catalyst was prepared by a co-precipitation method.It has a ginger like composite structure(CuO/CuBi_(2)O_(4))and exhibited a high formate faradaic efficiency of 98.07%at–0.98 V and a large current density of–56.12 mA.cm^(-2)at–1.28 V,which is twice as high as Bi2O3catalyst.Especially,high selectivity(FE^(–)_(HCOO)>85%)is maintained over a wide potential window of 500 mV.In-situ Raman measurements and structure characterization revealed that the reduced Cu1Bi1bimetallic catalyst possesses abundant Cu-Bi interfaces and residual Bi-O structures.The abundant Cu-Bi interface structures on the catalyst surface can provide abundant active sites for CO_(2)RR,while the Bi-O structures may stabilize the CO_(2)^(*–)intermediate.The synergistic effect of abundant Cu-Bi interfaces and Bi-O species promotes the efficient synthesis of formate by following the OCHO^(*)pathway. 展开更多
关键词 CO_(2)electroreduction bimetallic catalyst FORMATE Cu-Bi interfaces Bi-O structure
下载PDF
Reactive ball-milling synthesis of Co-Fe bimetallic catalyst for efficient hydrogenation of carbon dioxide to value-added hydrocarbons
2
作者 Haipeng Chen Chenwei Wang +5 位作者 Mengyang Zheng Chenlei Liu Wenqiang Li Qingfeng Yang Shixue Zhou Xun Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期210-218,共9页
Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi... Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons. 展开更多
关键词 Reactive ball milling Co-Fe bimetallic catalyst Carbon dioxide Value-added hydrocarbon C–C coupling reaction
下载PDF
Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell:A review
3
作者 Ke Zhao Yuanxiang Shu +1 位作者 Fengxiang Li Guosong Peng 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1043-1070,共28页
Microbial fuel cell(MFC) is one synchronous power generation device for wastewater treatment that takes into account environmental and energy issues, exhibiting promising potential. Sluggish oxygen reduction reaction(... Microbial fuel cell(MFC) is one synchronous power generation device for wastewater treatment that takes into account environmental and energy issues, exhibiting promising potential. Sluggish oxygen reduction reaction(ORR) kinetics on the cathode remains by far the most critical bottleneck hindering the practical application of MFC. An ideal cathode catalyst should possess excellent ORR activity, stability, and costeffectiveness, experiments have demonstrated that bimetallic catalysts are one of the most promising ORR catalysts currently. Based on this, this review mainly analyzes the reaction mechanism(ORR mechanisms, synergistic effects), advantages(combined with characterization technologies), and typical synthesis methods of bimetallic catalysts, focusing on the application effects of early Pt-M(M = Fe, Co, and Ni) alloys to bifunctional catalysts in MFC, pointing out that the main existing challenges remain economic analysis, long-term durability and large-scale application, and looking forward to this. At last, the research trend of bimetallic catalysts suitable for MFC is evaluated, and it is considered that the development and research of metal-organic framework(MOF)-based bimetallic catalysts are still worth focusing on in the future, intending to provide a reference for MFC to achieve energy-efficient wastewater treatment. 展开更多
关键词 bimetallic catalysts Oxygen reduction reaction Microbial fuel cell Wastewater treatment Power generation
下载PDF
Activity and Selectivity of Bimetallic Catalysts Based on SBA-15 for Nitrate Reduction in Water
4
作者 Mouhamad Rachini Mira Jaafar +12 位作者 Nabil Tabaja Sami Tlais Rasha Hamdan Fatima Al Ali Ola Haidar Ali Jaber Mohammad Kassem Eugene Bychkov Lucette Tidahy Renaud Cousin Dorothée Dewaele Tayssir Hamieh Joumana Toufaily 《Materials Sciences and Applications》 CAS 2023年第2期78-93,共16页
Nitrate from the application of nitrogen-based fertilizers in intensive agriculture is a notorious waste product, though it lacks cost-effective solutions for its removal from potential drinking water resources. Catal... Nitrate from the application of nitrogen-based fertilizers in intensive agriculture is a notorious waste product, though it lacks cost-effective solutions for its removal from potential drinking water resources. Catalytic reduction appears to be a promising technique for converting nitrates to benign nitrogen gas. Mesoporous silica SBA-15 is a frequently used catalyst support that has large surface areas and highly ordered nanopores. In this work, mesoporous silica SBA-15 bimetallic catalysts for nitrate reduction were investigated. The catalyst was optimized for the selection of promoter metal (Sn and Cu), noble metal (Pd and Pt) and loading ratios of these metals at different temperatures and reduction conditions. The catalysts prepared were characterized by FT-IR, N2 physisorption, XRD, SEM, and ICP. All catalysts showed the presence of cylindrical mesoporous channels and uniform pore structures that remained even after metals loading. In the presence of a CO<sub>2</sub> buffer, the catalysts 4Pd-1Cu/SBA-15 and 1Pt-1Cu/SBA-15 reduced at 100?C under H2 and 1Pd-1Cu/SBA-15 reduced at 200°C under H2 demonstrated very high nitrate conversion. Furthermore, the forementioned Pd catalysts had higher N2 selectivity (88% - 87%) compared to Pt catalyst (80%). Nitrate conversion by the 4Pd-1Cu/SBA-15 catalyst was significantly decreased to 81% in the absence of CO<sub>2</sub>. 展开更多
关键词 bimetallic catalyst Heterogeneous catalyst Nitrate Reduction SBA-15 XRD BET SEM FTIR ICP
下载PDF
Atomically Dispersed Fe-Co Bimetallic Catalysts for the Promoted Electroreduction of Carbon Dioxide 被引量:3
5
作者 Zhangsen Chen Gaixia Zhang +6 位作者 Yuren Wen Ning Chen Weifeng Chen Tom Regier James Dynes Yi Zheng Shuhui Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期79-93,共15页
The electroreduction reaction of CO_(2)(ECO_(2)RR)requires high-performance catalysts to convert CO_(2)into useful chemicals.Transition metal-based atomically dispersed catalysts are promising for the high selectivity... The electroreduction reaction of CO_(2)(ECO_(2)RR)requires high-performance catalysts to convert CO_(2)into useful chemicals.Transition metal-based atomically dispersed catalysts are promising for the high selectivity and activity in ECO_(2)RR.This work presents a series of atomically dispersed Co,Fe bimetallic catalysts by carbonizing the Fe-introduced Co-zeolitic-imidazolate-framework(C-Fe-Co-ZIF)for the syngas generation from ECO_(2)RR.The synergistic effect of the bimetallic catalyst promotes CO production.Compared to the pure C-Co-ZiF,C-Fe-Co-ZIF facilitates CO production with a CO Faradaic efficiency(FE)boost of 10%,with optimal FE_(CO)of 51.9%,FE_(H_(2))of 42.4%at-0.55 V,and CO current density of 8.0 mA cm^(-2)at-0.7 V versus reversible hydrogen electrode(RHE).The H_(2)/CO ratio is tunable from 0.8 to 4.2 in a wide potential window of-0.35 to-0.8 V versus RHE.The total FE_(CO+H_(2))maintains as high as 93%over 10 h.The proper adding amount of Fe could increase the number of active sites and create mild distortions for the nanoscopic environments of Co and Fe,which is essential for the enhancement of the CO production in ECO_(2)RR.The positive impacts of Cu-Co and Ni-Co bimetallic catalysts demonstrate the versatility and potential application of the bimetallic strategy for ECO_(2)RR. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS Syngas production COBALT IRON bimetallic catalysts
下载PDF
A multi-functional Ru Mo bimetallic catalyst for ultra-efficient C3 alcohols production from liquid phase hydrogenolysis of glycerol 被引量:1
6
作者 Guoxiao Cai Wei Xiong +5 位作者 Susu Zhou Pingle Liu Yang Lv Fang Hao Hean Luo ChangYi Kong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第11期199-215,共17页
Ru and Mo bimetallic catalysts supported on active carbon modified by phosphotungstic acid(PW)were designed and applied in glycerol hydrogenolysis reaction.The physicochemical properties of the catalysts were characte... Ru and Mo bimetallic catalysts supported on active carbon modified by phosphotungstic acid(PW)were designed and applied in glycerol hydrogenolysis reaction.The physicochemical properties of the catalysts were characterized and the presence of active sites was investigated from the perspective of the glycerol hydrogenolysis performance.The MoOxis highly selective for the C—O bond cleavage of glycerol molecules,which can reasonably regulate the strong C—C bond cleavage activity of Ru nanoparticles.By using sequential deposition of Ru and Mo supported on mesoporous PW-C,the characterization results show that the combination of isolated low-valence MoOxwith metal Ru particles can form“MoOx-Ru-PW”,which provides highly catalytic activity toward C—O bond cleavage,selectively producing more C3 alcohols(mainly 1,2(3)-propanediol).The glycerol conversion of 1%Mo/Ru/PW-C catalyst was 59.6%,the selectivity of C3 alcohol was 96.1%,and the selectivity of propanediol(1,2(3)-propanediol)was 94.9%.It is noteworthy that the selectivity of 1,3-propanediol reached 20.7%when the PW was 21.07%(mass).This study provides experimental evidence for the tandem dehydration and hydrogenation mechanism of the multifunctional Mo/Ru/PW-C catalyst. 展开更多
关键词 Heterogeneous catalysis bimetallic catalyst Glycerol hydrogenolysis RUTHENIUM MOLYBDENUM Phosphotungstic acid
下载PDF
Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane 被引量:1
7
作者 Jaylin Sasson Bitters Tina He +3 位作者 Elizabeth Nestler Sanjaya D.Senanayake Jingguang G.Chen Cheng Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期124-142,共19页
Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of... Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of products by means of Fischer–Tropsch synthesis. DRM has gained much attention as a means of mitigating damage from anthropogenic greenhouse gas(GHGs) emissions to the environment and instead utilizing these gases as precursors for value-added chemicals or to synthesize sustainable fuels and chemicals. Carbon deposition or coke formation, a primary cause of catalyst deactivation, has proven to be a major challenge in the development of DRM catalysts. The use of nickel-and cobalt-based catalysts has been extensively explored for DRM for their high activity and low cost but suffer from poor stability due to coke formation that has hindered their commercialization. Numerous articles have reviewed the various aspects of catalyst deactivation and strategies for mitigation, but few has focused on the benefit of bimetallic catalysts for mitigating coke formation. Bimetallic catalysts, often improve the catalytic stability over their monometallic counterparts due to synergistic effects resulting from two metal-tometal interactions. This review will cover DRM literature for various bimetallic catalyst systems, including the effect of supports and promoters, on the mitigation of carbonaceous deactivation. 展开更多
关键词 Dry reforming of methane Carbon dioxide bimetallic catalysts Coke formation catalyst stability
下载PDF
Formic acid fractionation towards highly efficient cellulose-derived PdAg bimetallic catalyst for H_(2) evolution 被引量:1
8
作者 Yanyan Yu Huanghui Xu +2 位作者 Hongfei Yu Lihong Hu Yun Liu 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期172-183,共12页
The present work,in which cellulose isolated from formic acid fractionation(FAC)is decorated with polyetherimide(PEI)to attain highly efficient cellulose-derived PdAgbimetallic catalyst(PdAg-PEI-FAC),has been investig... The present work,in which cellulose isolated from formic acid fractionation(FAC)is decorated with polyetherimide(PEI)to attain highly efficient cellulose-derived PdAgbimetallic catalyst(PdAg-PEI-FAC),has been investigated,and the catalyst properties are characterized by XRD,XPS,BET,ICP-AES and HAADF-STEM.The as-obtained Pd_(3.75)Ag_(3.75)-PEI-FAC exhibits excellent catalytic performance for H_(2)evolution from a sodium formate-free formic acid(FA)aqueous medium at ambient temperature and the turnover frequency(TOF)reaches a high value of 2875 h^(-1)which is superior to most of the previously reported Pd-based heterogeneous catalysts supported on a carbon matrix in the literature.The remarkable catalytic activities of PdAg-PEI-FAC result from high dispersion Pd and synergistic effects between the PdAg bimetallic system.Furthermore,the amide(-NH)group in PEI coated on cellulose acting as a proton scavenger efficiently improves the catalytic property of catalyst.In addition,the critical factors affecting H;release,such as FA concentration,reaction temperature,PdAg compositions and support matrix type,are also evaluated.Based on the experimental results,the probable three-step mechanism of H_(2)evolution from FA over Pd_(3.75)Ag_(3.75)-PEI-FAC is proposed.In the end,the activation energy(Ea)of Pd_(3.75)Ag_(3.75)-PEI-FAC catalyst is calculated to 53.97 kJ mol^(-1),and this catalyst shows unique robustness and satisfactory re-usability with no loss of catalytic activity after five recycles.The findings in this work provide a novel routine from lignocellulose fractionation towards cellulose-derived catalyst for H_(2)evolution. 展开更多
关键词 Formic acid fractionation Cellulose modification Cellulose-derived PdAg bimetallic catalyst Hydrogen generation Mechanism
下载PDF
A mechanic insight into low-temperature catalytic combustion toward ethylene oxide over Pt-Ru/CuCeO_(x) bimetallic catalyst
9
作者 Wenxi Zhou Kai Chen +7 位作者 Quanli Ke Haoru Wang Xiao Chen Yufeng Liu Guokai Cui Xiaole Weng Ying Zhou Hanfeng Lu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第6期881-888,I0003,共9页
The catalytic oxidation performance toward ethylene oxide(EO)and the consequent mechanism were investigated on the Pt-Ru/CuCeO_(x)bimetallic catalyst,which was prepared by a distinct method combining stepwise adsorpti... The catalytic oxidation performance toward ethylene oxide(EO)and the consequent mechanism were investigated on the Pt-Ru/CuCeO_(x)bimetallic catalyst,which was prepared by a distinct method combining stepwise adsorption and subsequent impregnation.The catalytic tests show that the introduction of Ru into the Pt catalyst,so as to form Pt-Ru bimetallic active sites,can greatly increase the oxidation activity of the catalyst,as evidenced by the extremely lower full oxidation temperature(120℃)when compared with that of the Pt/CeO_(2) catalyst(160℃).The XPS spectra show that the Ru species(mainly RuO_(x))have strong interaction with the CuCeO_(x) support,which can therefore affect the electron transfer between the Pt species and the support.As a result,the oxygen activation on Pt species is obviously facilitated and catalytic activity is enhanced.Finally,in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTs)was used to track the reaction mechanism.It is found that the catalytic oxidation process follows the MvK catalytic mechanism at low temperature and the L-H catalytic mechanism when the temperature moves to higher range. 展开更多
关键词 Ethylene oxide bimetallic catalyst Catalytic oxidation Degradation pathway Mechanism Rare earths
原文传递
Rational design of bimetallic catalysts for electrochemical CO_(2)reduction reaction:A review
10
作者 Minhan Li Jia-Nan Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第5期1288-1317,共30页
The electrochemical CO_(2)reduction reaction(eCO_(2)RR)is a compelling approach to convert CO_(2)into high-value fuels and chemicals using renewable energies.The rational design of catalysts is of great importance for... The electrochemical CO_(2)reduction reaction(eCO_(2)RR)is a compelling approach to convert CO_(2)into high-value fuels and chemicals using renewable energies.The rational design of catalysts is of great importance for achieving outstanding performance of this process.Metal-based catalysts have been drawing enormous attention in eCO_(2)RR due to their excellent catalytic performance and flexible selectivity.In the pursuit of overcoming the inherent disadvantages of monometallic catalysts and achieving breakthroughs in the catalytic performance,bimetallic strategy has been receiving extensive concerns and achieving remarkable results over decades.In this review,we attempt to give a comprehensive review on the bimetallic catalysts that are used for eCO_(2)RR.The effects in bimetallic catalysts that contribute to the enhanced eCO_(2)RR performance are first analyzed,demonstrating the superiority of bimetallic strategy.Then,the structural design of bimetallic catalysts is discussed as it plays a key role in eCO_(2)RR.Finally,the current advances and rules of selectivity of bimetallic catalysts in eCO_(2)RR are summarized based on the selectivity behaviors.By reviewing efforts devoted in this field,this review is believed to present a timely overview of the progress of bimetallic eCO_(2)RR catalysts and to offer potential future directions in the aim of developing highly efficient catalysts for eCO_(2)RR. 展开更多
关键词 electrochemical CO_(2)reduction bimetallic catalyst electronic effect tandem effect structural design
原文传递
Manipulation of the PdAu-PdAuO_(x)interface on Pd-Au bimetallic catalysts for the direct synthesis of hydrogen peroxide
11
作者 Jixuan Zhang Pengfei Tian +3 位作者 Aihao Xu Like Ouyang Zixu Yang Jing Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期195-201,共7页
Direct synthesis of H_(2)O_(2)from H_(2) and O_(2)via heterogeneous catalysis is an environmentally friendly and atomically economic alternative to the traditional anthraquinone oxidation(AO)process.Optimizing the ele... Direct synthesis of H_(2)O_(2)from H_(2) and O_(2)via heterogeneous catalysis is an environmentally friendly and atomically economic alternative to the traditional anthraquinone oxidation(AO)process.Optimizing the electronic and geometric structures of the active metals to break the current limitations of hydrogenation rate and H_(2)O_(2)selectivity is a promising and challenging topic.In this study,a series of Pd-Au bimetallic catalysts supported on TiO_(2)with a metal loading of 3.0 wt%and a constant Pd/Au molar ratio(Pd:Au=2:1)were prepared.The catalysts were reduced in H_(2) at different temperatures(473,573 and 673 K),and their catalytic activity for the direct H_(2)O_(2)synthesis were evaluated at 283 K and 0.1MPa.H_(2) reduced Pd-Au catalysts exhibited superior performance in direct H_(2)O_(2)synthesis.The maximum H_(2)O_(2)selectivity of 87.7%and H_(2)O_(2)yield of 3116.4 mmol h^(−1) gPd^(−1) were achieved over the Pd_(2.0)Au_(1.0)-573 catalyst with a H_(2) conversion of 12.8%.The tailored local chemical environment caused by H_(2) reduction creates a balanced ratio of Pd0 and PdO_(x) sites,thus improving the selectivity towards H_(2)O_(2).This work developed an effective strategy for fabrication of highly active and stable Pd-based H_(2)O_(2)synthesis catalysts with high H_(2)O_(2)yield. 展开更多
关键词 H_(2)O_(2)synthesis bimetallic catalysts Palladium particle size Pd^(0)/Pd^(2+)ratio Structure-performance relationship
原文传递
Long-range electron synergy over Pt_(1)-Co_(1)/CN bimetallic single-atom catalyst in enhancing charge separation for photocatalytic hydrogen production 被引量:1
12
作者 Man Yang Jing Mei +3 位作者 Yujing Ren Jie Cui Shuhua Liang Shaodong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期502-509,I0011,共9页
The development of novel single-atom catalysts with optimal electron configuration and economical noble-metal cocatalyst for efficient photocatalytic hydrogen production is of great importance,but still challenging.He... The development of novel single-atom catalysts with optimal electron configuration and economical noble-metal cocatalyst for efficient photocatalytic hydrogen production is of great importance,but still challenging.Herein,we fabricate Pt and Co single-atom sites successively on polymeric carbon nitride(CN).In this Pt_(1)-Co_(1)/CN bimetallic single-atom catalyst,the noble-metal active sites are maximized,and the single-atomic Co_(1)N_4sites are tuned to Co_(1)N_3sites by photogenerated electrons arising from the introduced single-atomic Pt_(1)N_4sites.Mechanism studies and density functional theory(DFT)calculations reveal that the 3d orbitals of Co_(1)N_3single sites are filled with unpaired d-electrons,which lead to the improved visible-light response,carrier separation and charge migration for CN photocatalysts.Thereafter,the protons adsorption and activation are promoted.Taking this advantage of long-range electron synergy in bimetallic single atomic sites,the photocatalytic hydrogen evolution activity over Pt_(1)-Co_(1)/CN achieves 915.8 mmol g^(-1)Pt h^(-1),which is 19.8 times higher than Co_(1)/CN and 3.5 times higher to Pt_(1)/CN.While this electron-synergistic effect is not so efficient for Pt nanoclusters.These results demonstrate the synergistic effect at electron-level and provide electron-level guidance for the design of efficient photocatalysts. 展开更多
关键词 bimetallic single-atom catalyst Long-range electron synergy Charge separation/transfer Carbon nitride Hydrogen production
下载PDF
Cooperation between Pt and Ru on RuPt/AC bimetallic catalyst in the hydrogenation of phthalates 被引量:3
13
作者 Yan Xu Chenguang Wu +4 位作者 Yan Wang Ying Zhang Han Sun Haijun Chen Yujun Zhao 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期516-520,共5页
RuPt/AC bimetallic catalysts were pre pared by two-step incipient impregnation method and evaluated in the hydrogenation of phthalates.According to the characterization results,well dispersed Ru Pt bimetallic nanopart... RuPt/AC bimetallic catalysts were pre pared by two-step incipient impregnation method and evaluated in the hydrogenation of phthalates.According to the characterization results,well dispersed Ru Pt bimetallic nanoparticles were formed on the catalyst,and the strong interaction between the two metals resulted in the formation of RuPt alloy.It was found that Ru can donate electrons to Pt on RuPt alloy nanoparticles,leading to the formation of electron-deficient Ru which significantly promotes the hydrogenation rate of dioctyl phthalate and improves the selectivity of dioctyl di-2-ethylhexylcyclohexane-1,4-dicarboxylate by accelerating the further hydrogenation of intermediate products.The bimetallic RuPt catalyst also presented excellent stability and versatility in the hydrogenation of phthalates,demonstrating its prospective future in the hydrogenation of aromatic ring contained compounds. 展开更多
关键词 RU RuPt alloy bimetallic catalyst PHTHALATES HYDROGENATION
原文传递
Synergistic effects of bimetallic Cu-Fe/SiO_2 nanocatalysts in selective hydrogenation of diethyl malonate to 1,3-propanediol 被引量:1
14
作者 Le He Xiaoxiao Gong +2 位作者 Linmin Ye Xinping Duan Youzhu Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期1038-1044,共7页
Cu_x-Fe_y/SiO_2 catalysts were prepared using urea-assisted sol-gel method.The structure and physicochemical properties of the catalysts were characterized using N_2 adsorption-desorption,transmission electron microsc... Cu_x-Fe_y/SiO_2 catalysts were prepared using urea-assisted sol-gel method.The structure and physicochemical properties of the catalysts were characterized using N_2 adsorption-desorption,transmission electron microscopy,H_2-temperature-programmed reduction,powder X-ray diffraction,and X-ray photoelectron spectroscopy.Compared with monometallic Cu or Fe catalysts,the bimetallic Cu_x-Fe_y/SiO_2 catalysts exhibited enhanced catalytic performance for the selective hydrogenation of diethyl malonate to1,3-propanediol.The bimetallic catalyst with an optimal Cu/Fe atomic ratio of 2 exhibited the highest activity,which yielded 96.3%conversion to diethyl malonate and 93.3%selectivity to 1,3-propanediol under the optimal reaction conditions.Characterization results revealed that interactions between Cu and Fe contributed to the improvement of diethyl malonate conversion and selectivity to 1,3-propanediol.The X-ray photoelectron spectroscopy results revealed that the addition of appropriate amount of Fe species enhanced the reduction of Cu^(2+) species,thereby increasing the Cu° species on the surface of bimetallic catalyst.It led to a better chemisorption capacity of hydrogen and further promoted of the activation of hydrogen molecule.The ethyl acetate temperature-programmed desorption results indicated that the FeO_x species provided the additional adsorption sites for substrate molecules,and they activated the C=O bond.The improved catalytic performance of bimetallic Cu_x-Fe_y/SiO_2 catalyst was mainly attributed to the synergistic effect between Cu° and FeO_x species. 展开更多
关键词 bimetallic catalyst HYDROGENATION 1 3-PROPANEDIOL Cu–Fe Synergistic effect
下载PDF
Mechanistic understanding of Cu-based bimetallic catalysts 被引量:1
15
作者 You Han Yulian Wang +3 位作者 Tengzhou Ma Wei Li Jinli Zhang Minhua Zhang 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2020年第5期689-748,共60页
Copper has received extensive attention in the field of catalysis due to its rich natural reserves,low cost,and superior catalytic performance.Herein,we reviewed two modification mechanisms of co-catalyst on the coord... Copper has received extensive attention in the field of catalysis due to its rich natural reserves,low cost,and superior catalytic performance.Herein,we reviewed two modification mechanisms of co-catalyst on the coordination environment change of Cu-based catalysts:(1)change the electronic orbitals and geometric structure of Cu without any catalytic functions;(2)act as an additional active site with a certain catalytic function,as well as their catalytic mechanism in major reactions,including the hydrogenation to alcohols,dehydrogenation of alcohols,water gas shift reaction,reduction of nitrogenous compounds,electrocatalysis and others.The influencing mechanisms of different types of auxiliary metals on the structure-activity relationship of Cu-based catalysts in these reactions were especially summarized and discussed.The mechanistic understanding can provide significant guidance for the design and controllable synthesis of novel Cu-based catalysts used in many industrial reactions. 展开更多
关键词 COPPER bimetallic catalyst COORDINATION modification mechanism catalytic application
原文传递
Fluorinated bimetallic nanoparticles decorated carbon nanofibers as highly active and durable oxygen electrocatalyst for fuel cells
16
作者 Yiming Leng Bolong Yang +1 位作者 Yun Zhao Zhonghua Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期549-555,I0014,共8页
The low activity and durability are still the critical barriers for non-precious metal electrocatalyst,mainly involving M-N/C(M=Fe,Co,Mn et al),applied in fuel cell.Constructing bimetallic sites has been explored as a... The low activity and durability are still the critical barriers for non-precious metal electrocatalyst,mainly involving M-N/C(M=Fe,Co,Mn et al),applied in fuel cell.Constructing bimetallic sites has been explored as an effective method to boost the performance of the catalyst for the synergistic effect between metal atoms.However,this synergistic effect is always suppressed in acidic conditions and results in unstable catalytic performance.Here we create novel fluorinated iron(Fe)and cobalt(Co)bimetallic nanoparticles distributed on nitrogen-doped carbon nanofibers(CNFs)for oxygen reduction reaction(ORR).The fluorination strongly increased the charge density of the bimetallic catalyst and resulted in a remarkable catalytic performance with the half-wave potential of 804 m V in 0.1 M HCl O_(4)and 1.6 times power density improvement for the proton exchange membrane fuel cell device.Importantly,the chemical and mechanical robust CNFs support improved the electric conductivity and stability of bimetallic catalysts,which leads to an ultra-stable electrocatalyst.The fuel cell voltage can keep stable even after 110 h,instead of the continuingly decrease in the traditional M-N/C. 展开更多
关键词 bimetallic catalyst FLUORINATION ELECTROSPINNING ORR catalyst PEM fuel cell
下载PDF
NiCu bimetallic catalysts derived from layered double hydroxides for hydroconversion of n-heptane
17
作者 Yanru Zhu Minghuan Yang +4 位作者 Zhen Zhang Zhe An Jian Zhang Xin Shu Jing He 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第4期2069-2072,共4页
Supported NiCu bimetallic catalysts have been produced in-situ on commercial Al_(2)O_(3)by using layered double hydroxides as precursors. The resulting catalysts show a uniform Ni and Cu distribution, thus providing g... Supported NiCu bimetallic catalysts have been produced in-situ on commercial Al_(2)O_(3)by using layered double hydroxides as precursors. The resulting catalysts show a uniform Ni and Cu distribution, thus providing good activity and selectivity in the reforming reaction of n-heptane. The catalytic performance has been found to depend on the Cu/Ni ratio, revealing the synergic catalysis between homogeneously dispersed Ni and Cu sites. The good catalysis of Ni Cu bimetallic catalysts makes it possible to partly or even completely replace Pt with NiCu bimetallic catalysts. 展开更多
关键词 n-Heptane reforming NiCu bimetallic catalysts Synergic catalysis Uniform distribution Layered double hydroxides
原文传递
Supported bimetallic catalyst Pt-Pb/SiO2 for selective conversion of nitrobenzene to p-aminophenol in pressurized CO2/H2O system
18
作者 Ting-Ting Zhang Jing-Yang Jiang Yan-Hua Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第2期307-311,共5页
Various supported Pt-Pb bimetallic catalysts were prepared and applied for the catalytic conversion of nitrobenzene to p-aminophenol in the environmentally benign pressurized CO_2/H_2O system.Among the bimetallic cata... Various supported Pt-Pb bimetallic catalysts were prepared and applied for the catalytic conversion of nitrobenzene to p-aminophenol in the environmentally benign pressurized CO_2/H_2O system.Among the bimetallic catalysts prepared,Pt-Pb/SiO_2 is the best and nitrobenzene could be converted to paminophenol with a selectivity as high as 82% when the reaction was carried out using this catalyst at110 ℃ under 5 MPa CO_2 and 0.2 MPa H_2. 展开更多
关键词 NITROBENZENE P-AMINOPHENOL Pt-Pb bimetallic catalysts CO2/H2O system Environmentally benign
原文传递
Selective hydrogenation of citral over Au-based bimetallic catalysts in supercritical carbon dioxide
19
作者 LIU RuiXia ZHAO FengYu 《Science China Chemistry》 SCIE EI CAS 2010年第7期1571-1577,共7页
Selective hydrogenation of citral was investigated over Au-based bimetallic catalysts in the environmentally benign supercritical carbon dioxide (scCO_(2)) medium.The catalytic performances were different in citral hy... Selective hydrogenation of citral was investigated over Au-based bimetallic catalysts in the environmentally benign supercritical carbon dioxide (scCO_(2)) medium.The catalytic performances were different in citral hydrogenation when Pd or Ru was mixed (physically and chemically) with Au.Compared with the corresponding monometallic catalyst,the total conversion and the selectivity to citronellal (CAL) were significantly enhanced over TiO2 supported Pd and Au bimetallic catalysts (physically and chemically mixed);however,the conversion and selectivity did not change when Ru was physically mixed with Au catalyst compared to the monometallic Ru/TiO2,and the chemically mixed Ru-Au/TiO2 catalyst did not show any activity.The effect of CO_(2) pressure on the conversion of citral and product selectivity was significantly different over the Au/TiO2,Pd-Au/TiO2,and Pd/TiO2 catalysts.It was assumed to be ascribed to the difference in the interactions between Au,Pd nanoparticles and CO_(2) under different CO_(2) pressures. 展开更多
关键词 supercritical CO_(2) CITRAL HYDROGENATION bimetallic catalysts synergistic effects
原文传递
Ni-Co bimetallic catalyst for CH_(4) reforming with CO_(2)
20
作者 Xiaohong LI Jun AI +1 位作者 Wenying LI Dongxiong LI 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2010年第4期476-480,共5页
A co-precipitation method was employed to prepare Ni/Al_(2)O_(3)-ZrO_(2),Co/Al_(2)O_(3)-ZrO_(2)and Ni-Co/Al_(2)O_(3)-ZrO_(2)catalysts.Their properties were characterized by N_(2) adsorption(BET),thermogravimetric anal... A co-precipitation method was employed to prepare Ni/Al_(2)O_(3)-ZrO_(2),Co/Al_(2)O_(3)-ZrO_(2)and Ni-Co/Al_(2)O_(3)-ZrO_(2)catalysts.Their properties were characterized by N_(2) adsorption(BET),thermogravimetric analysis(TGA),temperature-programmed reduction(TPR),temperature-programmed desorption(CO_(2)-TPD),and temperature-programmed surface reaction(CH_(4)-TPSR and CO_(2)-TPSR).Ni-Co/Al_(2)O_(3)-ZrO_(2)bimetallic catalyst has good performance in the reduction of active components Ni,Co and CO_(2)adsorption.Compared with mono-metallic catalyst,bimetallic catalyst could provide more active sites and CO_(2)adsorption sites(C+CO_(2)=2CO)for the methane-reforming reaction,and a more appropriate force formed between active components and composite support(SMSI)for the catalytic reaction.According to the CH_(4)-CO_(2)-TPSR,there were 80.9%and 81.5%higher CH_(4) and CO_(2)conversion over Ni-Co/Al_(2)O_(3)-ZrO_(2)catalyst,and its better resistance to carbon deposition,less than 0.5%of coke after 4 h reaction,was found by TGA.The high activity and excellent anti-coking of the Ni-Co/Al_(2)O_(3)-ZrO_(2)catalyst were closely related to the synergy between Ni and Co active metal,the strong metal-support interaction and the use of composite support. 展开更多
关键词 Ni-Co bimetallic catalyst composite support CH_(4)reforming with CO_(2)
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部