期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis and FEM simulation of extrusion process of bimetal tubes through rotating conical dies 被引量:4
1
作者 H.HAGHIGHAT M M.MAHDAVI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3392-3399,共8页
Bimetal tube extrusion process through rotating conical dies was studied analytically and numerically. A kinematically admissible velocity field was developed to evaluate the internal power and the power dissipated on... Bimetal tube extrusion process through rotating conical dies was studied analytically and numerically. A kinematically admissible velocity field was developed to evaluate the internal power and the power dissipated on frictional and velocity discontinuity surfaces. By balancing the moment applied by the rotary die with the moments caused by the circumferential frictions in the container and on the mandrel, the twisting length of the material in the container was determined. By equating the total power with the required external power, the extrusion pressure was determined by optimizing with respect to the slippage parameter between the die and the outer material. It is shown that the extrusion pressure is decreased by about 20% by the die rotation. The bimetal tube extrusion process through rotating die was also simulated using the finite element code, ABAQUS. Analytical results were compared with the results given by the finite element method. These comparisons show a good agreement. 展开更多
关键词 bimetal tube EXTRUSION rotating die upper bound method FEM
下载PDF
Influence of mandrel-cores filling on size effect of cross-section distortion of bimetallic thin-walled composite bending tube 被引量:1
2
作者 Yingxia ZHU Miaomiao WAN +3 位作者 Wei CHEN Yun WANG Wenbin TU Fan XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第3期421-435,共15页
Two new size factors of cross-section hollow coefficient and bending degree are introduced to reveal the size effect of bending forming of bimetallic composite tube.Hollow coefficient and bending degree can limit the ... Two new size factors of cross-section hollow coefficient and bending degree are introduced to reveal the size effect of bending forming of bimetallic composite tube.Hollow coefficient and bending degree can limit the commonly used bent tube to the size description range of(0,2.00).The evolution laws of the cross-section distortion forms in the hollow coefficient-bending degree interval are revealed as well as the action of the mandrel-cores on the size effect.Results show the mandrel-cores filling can expand the forming limit of the bent tube,but also bring two other forming defects of wrinkle and rupture.The identification factor(hollow coefficient multiply bending degree)provides a method for querying the cross-section distortion forms of all composite bending tubes.In the identification factor interval(0,1.00),the distribution area of bending forming defects of the composite tube is continuous.The thin-walled composite bending tube collapses when identification factor in(0,0.39),wrinkles when identification factor in[0.39,0.50),and ruptures when identification factor in[0.50,1.00).The mathematical model of size effect is derived,by which the average cross-section distortion rate is found to distribute like a radial leaf in the hollow coefficient-bending degree qualified forming space.The best forming zone is hollow coefficient 0.46-0.68,and bending degree 0.25-0.47. 展开更多
关键词 BENDING bimetallic composite tube Cross-section distortion Size factor Size effect MANDREL
原文传递
Laboratory Test Rig of a LHTES (Latent Heat Thermal Energy Storage): Construction and First Experimental Results 被引量:1
3
作者 Georg Urschitz Heimo Walter Michael Hameter 《Journal of Energy and Power Engineering》 2014年第11期1838-1847,共10页
The present experimental investigation covers the construction of a LHTES (latent heat thermal energy storage system), which uses NaNO_3 (sodium nitrate) as PCM (phase change material). The storage unit is fille... The present experimental investigation covers the construction of a LHTES (latent heat thermal energy storage system), which uses NaNO_3 (sodium nitrate) as PCM (phase change material). The storage unit is filled with 300 kg of the PCM. For the heat transfer, a vertically arranged bimetallic mono tube with longitudinal fins is used. The fins increase the heat flux into/from the PCM. Thermal oil is used as a heat transfer medium, as it allows working temperature up to 400 ℃. This thermal energy storage is able to store 60 kWh of thermal energy and can be loaded with a power up to 200 kW. One part of the investigation results presented in this paper was the determination of the storable energy and the comparison with data from literature and calculations. Additionally, the melting behavior of the PCM was measured with temperature sensors located at different positions over the height of the storage unit. Finally, the entrance of the heat transfer medium was changed from the top to the bottom of the thermal energy storage unit and a different melting behavior could be detected. 展开更多
关键词 LHTES Phase change material bimetallic mono tube longitudinal fins.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部