A new generalized exponentiated Weibull model called Gumbel-exponentiated </span><span style="font-family:Verdana;">Weibull</span><span style="font-family:""> </span...A new generalized exponentiated Weibull model called Gumbel-exponentiated </span><span style="font-family:Verdana;">Weibull</span><span style="font-family:""> </span><span style="font-family:Verdana;">{Logistic} distribution is introduced and studied. The new distribution extends the exponentiated Weibull distribution with additional parameters and bimodal densities. Some new and earlier distributions formed the sub-models of the proposed distribution. The mathematical properties of the new distribution including expressions for the hazard function, survival function, moments, order statistics, mean deviation and absolute mean deviation from the mean, and entropy were derived. Monte Carlo simulation study was carried out to assess the finite sample behavior of the parameter estimates by maximum likelihood estimation approach. The superiority of the new generalized exponentiated Weibull distribution over some competing distributions was proved empirically using the fitted results from </span><span style="font-family:Verdana;">three</span><span style="font-family:Verdana;"> real life datasets.展开更多
The microstructural development of bimodal high density polyethylene subjected to tensile deformation was investigated as a function of strain after annealing at different temperatures by means of a scanning synchrotr...The microstructural development of bimodal high density polyethylene subjected to tensile deformation was investigated as a function of strain after annealing at different temperatures by means of a scanning synchrotron small angle X-ray scattering(SAXS)technique.Two different deformation mechanisms were activated in sequence upon tensile deformation:intralamellar slipping of crystalline blocks dominates the deformation behavior at small deformations whereas a stress-induced crystalline block fragmentation and recrystallization process occurs at a critical strain yielding new crystallites with the molecular chains preferentially oriented along the drawing direction.The critical strain associated with the lamellar-to-fibrillar transition was found to be ca.0.9 in bimodal sample,which is significantly larger than that observed for unimodal high-density polyethylene(0.4).This observation is primarily due to the fact that the bimodal sample possesses a greater mobility of the amorphous phase and thereby a reduced modulus of the entangled amorphous network.The conclusion of the mobility of the amorphous phase as a determining factor for the critical strain was further proven by the 1H-NMR T2 relaxation time.All these findings contribute to our understanding of the excellent slow crack growth resistance of bimodal polyethylene for pipe application.展开更多
文摘A new generalized exponentiated Weibull model called Gumbel-exponentiated </span><span style="font-family:Verdana;">Weibull</span><span style="font-family:""> </span><span style="font-family:Verdana;">{Logistic} distribution is introduced and studied. The new distribution extends the exponentiated Weibull distribution with additional parameters and bimodal densities. Some new and earlier distributions formed the sub-models of the proposed distribution. The mathematical properties of the new distribution including expressions for the hazard function, survival function, moments, order statistics, mean deviation and absolute mean deviation from the mean, and entropy were derived. Monte Carlo simulation study was carried out to assess the finite sample behavior of the parameter estimates by maximum likelihood estimation approach. The superiority of the new generalized exponentiated Weibull distribution over some competing distributions was proved empirically using the fitted results from </span><span style="font-family:Verdana;">three</span><span style="font-family:Verdana;"> real life datasets.
基金This work was financially supported by the National Natural gieile Fuundaliun uf Chine(No.11074119)Jilin ScienuiL and Technological Development Program(No.20180519001JH).We thank Prof.Yongfeng Men and Dr,Victor Litvinov for helpful discussions.
文摘The microstructural development of bimodal high density polyethylene subjected to tensile deformation was investigated as a function of strain after annealing at different temperatures by means of a scanning synchrotron small angle X-ray scattering(SAXS)technique.Two different deformation mechanisms were activated in sequence upon tensile deformation:intralamellar slipping of crystalline blocks dominates the deformation behavior at small deformations whereas a stress-induced crystalline block fragmentation and recrystallization process occurs at a critical strain yielding new crystallites with the molecular chains preferentially oriented along the drawing direction.The critical strain associated with the lamellar-to-fibrillar transition was found to be ca.0.9 in bimodal sample,which is significantly larger than that observed for unimodal high-density polyethylene(0.4).This observation is primarily due to the fact that the bimodal sample possesses a greater mobility of the amorphous phase and thereby a reduced modulus of the entangled amorphous network.The conclusion of the mobility of the amorphous phase as a determining factor for the critical strain was further proven by the 1H-NMR T2 relaxation time.All these findings contribute to our understanding of the excellent slow crack growth resistance of bimodal polyethylene for pipe application.