The current measuring methods of walkability,such as the walk score,consider that walking distance decay laws for all amenities are the same,which is not applicable to typical communities in China with plentiful resou...The current measuring methods of walkability,such as the walk score,consider that walking distance decay laws for all amenities are the same,which is not applicable to typical communities in China with plentiful resources.Therefore,the walking distance decay laws of multi-type and multi-scale facilities are studied.Firstly,based on the residents'amenity selection survey,the walking distance decay law of residents'choice of amenity was studied from three aspects,including the law of all amenities,the laws of different types of amenities and the laws of different scales of amenities.It was proved that the walking distance decay laws of different kinds of amenities showed a significant difference.Secondly,different amenities'acceptable walking distance and optimum walking distance were obtained according to previous studies and the decay curve.Amenities with higher attraction and/or a larger scale showed a longer acceptable walking distance and optimum walking distance.Finally,the binary logistic model was used to describe the relationships between walking distance,amenity type,amenity scale and the probability of one amenity being selected,the prediction accuracy of which reached 80.4%.The calculated probability obtained from the model can be used as the decay coefficient of amenities in the measurement of walkability,providing a reference for the site selection and evaluation of amenities.展开更多
[Method]The paper was to understand factors influencing the channel choice of consumers buying beef.[Method]The selection behavior and influencing factors of beef consumption of Yanji urban residents in supermarkets a...[Method]The paper was to understand factors influencing the channel choice of consumers buying beef.[Method]The selection behavior and influencing factors of beef consumption of Yanji urban residents in supermarkets and farmers’market were analyzed by constructing a binary Logistic model.[Result]Education level,monthly household income and household food expenditure to total income were positively correlated with beef purchase in supermarket,while age was negatively correlated with beef purchase in supermarket.[Conclusion]The main reasons that consumers buy beef in supermarket were type of beef,brand and clean environment,and in farmers’market were price,freshness and consumption habit.展开更多
Through field investigation, questionnaire interview and interview with experts and scholars, the study of the wisdom of the elderly endowment willingness and demand, understand wisdom pension service demand and socia...Through field investigation, questionnaire interview and interview with experts and scholars, the study of the wisdom of the elderly endowment willingness and demand, understand wisdom pension service demand and social supply, and then found social in the problems that exist in the pension services will meet the wisdom, so as to put forward the targeted countermeasures and Suggestions, can cause social attention to wisdom pension services, promote and plural social capital to participate in, give full play to the role of the market.展开更多
In 2014, 32,675 deaths were recorded in vehicle crashes within the United States. Out of these, 51% of the fatalities occurred in rural highways compared to 49% in urban highways. No specific crash data are available ...In 2014, 32,675 deaths were recorded in vehicle crashes within the United States. Out of these, 51% of the fatalities occurred in rural highways compared to 49% in urban highways. No specific crash data are available for the built-up areas along rural highways. Due to high fatalities in rural highways, it is important to identify the factors that cause the vehicle crashes. The main objective of this study is to determine the factors associated with se- verities of crashes that occurred in built-up areas along the rural highways of Nevada. Those factors could aid in making informed decisions while setting up speed zones in these built-up areas. Using descriptive statistics and binary logistic regression model, 337 crashes that occurred in 11 towns along the rural highways from 2002 to 2010 were analyzed. The results showed that more crashes occurred during favorable driving conditions, e.g., 87% crashes on dry roads and 70% crashes in clear weather. The binary logistic regression model showed that crashes occurred from midnight until 4 a.m. were 58.3% likely to be injury crashes rather than property damage only crashes, when other factors were kept at their mean values. Crashes on weekdays were three times more likely to be injury crashes than that occurred on weekends. When other factors were kept at their mean value, crashes involving motorcycles had an 80.2% probability of being injury crashes. Speeding was found to be 17 times more responsible for injury crashes than mechanical defects of the vehicle. As a result of this study, the Nevada Department of Transportation now can take various steps to improve public safety, including steps to reduce speeding and encourage the use of helmets for motorcycle riders.展开更多
The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics h...The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics have put forward numerous default prediction models.However,how to use multiple models to enhance overall performance on default prediction remains untouched.In this paper,a parametric and non-parametric combination model is proposed.Firstly,binary logistic regression model(BLRM),support vector machine(SVM),and decision tree(DT) are used respectively to establish models with relatively stable and high performance.Secondly,in order to make further improvement to the overall performance,a combination model using the method of multiple discriminant analysis(MDA) is constructed.In this way,the coverage rate of the combination model is greatly improved,and the risk of miscarriage is effectively reduced.Lastly,the results of the combination model are analyzed by using the K-means clustering,and the clustering distribution is consistent with a normal distribution.The results show that the combination model based on parametric and non-parametric can effectively enhance the overall performance on default prediction.展开更多
This work uses regression models to analyze two characteristics of recurrent congestion: breakdown, the transition from freely flowing conditions to a congested state, and duration, the time between the onset and cle...This work uses regression models to analyze two characteristics of recurrent congestion: breakdown, the transition from freely flowing conditions to a congested state, and duration, the time between the onset and clearance of recurrent congestion. First, we apply a binary logistic regression model where a continuous measurement for traffic flow and a dichoto- mous categorical variable for time-of-day (AM- or PM-rush hours) is used to predict the probability of breakdown. Second, we apply an ordinary least squares regression model where categorical variables for time-of-day (AM- or PM-rush hours) and day-of-the-week (Monday-Thursday or Friday) are used to predict recurrent congestion duration. Models are fitted to data collected from a bottleneck on 1-93 in Salem, NH, over a period of 9 months. Results from the breakdown model, predict probabilities of recurrent congestion, are consistent with observed traffic and illustrate an upshift in breakdown probabilities between the AM- and PM-rush periods. Results from the regression model for congestion duration reveal the presences of significant interaction between time-of-day and day-of-the-week. Thus, the effect of time-of-day on congestion duration depends on the day-of-the-week. This work provides a simplification of recurrent congestion and recovery, very noisy processes. Simplification, conveying complex relationships with simple statistical summaries-facts, is a practical and powerful tool for traffic administrators to use in the decision-making process.展开更多
Introduction:This study investigated factors affecting farmers’participation in watershed management programs in the Northeastern highlands of Ethiopia by taking the Teleyayen sub-watershed as a case study.Data were ...Introduction:This study investigated factors affecting farmers’participation in watershed management programs in the Northeastern highlands of Ethiopia by taking the Teleyayen sub-watershed as a case study.Data were collected from 215 farm households which were selected from the four villages using a multistage sampling procedure,involving a combination of purposive and random sampling.Data were gathered using a structured survey questionnaire,focus group discussion,and key informant interviews.Descriptive analysis,Pearson correlation analysis,and regression analysis were employed to analyze the data.Results:Findings of this study showed that farmer’s perception has a strong positive correlation(r=0.612,P=0.000)with the farmer’s decision to participate in the watershed management programs followed by government support(r=0.163,P=0.017),while the slope of the farmland and the gender of the household head have shown significant and negative associations.The binary logistic regression analysis also revealed that six independent variables were significant in explaining the factors affecting the farmers’decision to participate in watershed management programs.These variables were land redistribution,gender,agricultural labor force,extension service,farm size,and slope.Of these,land redistribution,gender,agricultural labor force,extension service,and slope of the farmland indicated a negative influence,while farm size of a household exerted a positive impact.The study also examined the role of discrete variables in explaining variations of variables in affecting the farmers’decision to participate in the programs.Thus,two variables found to be significant.These variables are the gender of the household head and land tenure security.Accordingly,the chi-square result of the variable(χ^(2)=9.052)of gender was found to be statistically significant at the 95%level of significance.Similarly,the chi-square result(X^(2)=8.792)of land tenure security was found to be statistically significant at the 95%level of significance.Conclusions:The result of the study suggests to work on raising the awareness of farmers’about the long-term benefits of the watershed programs and to design a strategy to diversify their livelihoods.展开更多
文摘The current measuring methods of walkability,such as the walk score,consider that walking distance decay laws for all amenities are the same,which is not applicable to typical communities in China with plentiful resources.Therefore,the walking distance decay laws of multi-type and multi-scale facilities are studied.Firstly,based on the residents'amenity selection survey,the walking distance decay law of residents'choice of amenity was studied from three aspects,including the law of all amenities,the laws of different types of amenities and the laws of different scales of amenities.It was proved that the walking distance decay laws of different kinds of amenities showed a significant difference.Secondly,different amenities'acceptable walking distance and optimum walking distance were obtained according to previous studies and the decay curve.Amenities with higher attraction and/or a larger scale showed a longer acceptable walking distance and optimum walking distance.Finally,the binary logistic model was used to describe the relationships between walking distance,amenity type,amenity scale and the probability of one amenity being selected,the prediction accuracy of which reached 80.4%.The calculated probability obtained from the model can be used as the decay coefficient of amenities in the measurement of walkability,providing a reference for the site selection and evaluation of amenities.
基金Supported by"Twelfth Five-year"Social Science Research Project of Jilin Department of Education
文摘[Method]The paper was to understand factors influencing the channel choice of consumers buying beef.[Method]The selection behavior and influencing factors of beef consumption of Yanji urban residents in supermarkets and farmers’market were analyzed by constructing a binary Logistic model.[Result]Education level,monthly household income and household food expenditure to total income were positively correlated with beef purchase in supermarket,while age was negatively correlated with beef purchase in supermarket.[Conclusion]The main reasons that consumers buy beef in supermarket were type of beef,brand and clean environment,and in farmers’market were price,freshness and consumption habit.
文摘Through field investigation, questionnaire interview and interview with experts and scholars, the study of the wisdom of the elderly endowment willingness and demand, understand wisdom pension service demand and social supply, and then found social in the problems that exist in the pension services will meet the wisdom, so as to put forward the targeted countermeasures and Suggestions, can cause social attention to wisdom pension services, promote and plural social capital to participate in, give full play to the role of the market.
基金Nevada Department of Transportation(NDOT)for funding the studyprovided under grant#P255-11-803 by NDOT
文摘In 2014, 32,675 deaths were recorded in vehicle crashes within the United States. Out of these, 51% of the fatalities occurred in rural highways compared to 49% in urban highways. No specific crash data are available for the built-up areas along rural highways. Due to high fatalities in rural highways, it is important to identify the factors that cause the vehicle crashes. The main objective of this study is to determine the factors associated with se- verities of crashes that occurred in built-up areas along the rural highways of Nevada. Those factors could aid in making informed decisions while setting up speed zones in these built-up areas. Using descriptive statistics and binary logistic regression model, 337 crashes that occurred in 11 towns along the rural highways from 2002 to 2010 were analyzed. The results showed that more crashes occurred during favorable driving conditions, e.g., 87% crashes on dry roads and 70% crashes in clear weather. The binary logistic regression model showed that crashes occurred from midnight until 4 a.m. were 58.3% likely to be injury crashes rather than property damage only crashes, when other factors were kept at their mean values. Crashes on weekdays were three times more likely to be injury crashes than that occurred on weekends. When other factors were kept at their mean value, crashes involving motorcycles had an 80.2% probability of being injury crashes. Speeding was found to be 17 times more responsible for injury crashes than mechanical defects of the vehicle. As a result of this study, the Nevada Department of Transportation now can take various steps to improve public safety, including steps to reduce speeding and encourage the use of helmets for motorcycle riders.
基金supported by the National Natural Science Foundation of China Key Project under Grant No.70933003the National Natural Science Foundation of China under Grant Nos.70871109 and 71203247
文摘The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics have put forward numerous default prediction models.However,how to use multiple models to enhance overall performance on default prediction remains untouched.In this paper,a parametric and non-parametric combination model is proposed.Firstly,binary logistic regression model(BLRM),support vector machine(SVM),and decision tree(DT) are used respectively to establish models with relatively stable and high performance.Secondly,in order to make further improvement to the overall performance,a combination model using the method of multiple discriminant analysis(MDA) is constructed.In this way,the coverage rate of the combination model is greatly improved,and the risk of miscarriage is effectively reduced.Lastly,the results of the combination model are analyzed by using the K-means clustering,and the clustering distribution is consistent with a normal distribution.The results show that the combination model based on parametric and non-parametric can effectively enhance the overall performance on default prediction.
文摘This work uses regression models to analyze two characteristics of recurrent congestion: breakdown, the transition from freely flowing conditions to a congested state, and duration, the time between the onset and clearance of recurrent congestion. First, we apply a binary logistic regression model where a continuous measurement for traffic flow and a dichoto- mous categorical variable for time-of-day (AM- or PM-rush hours) is used to predict the probability of breakdown. Second, we apply an ordinary least squares regression model where categorical variables for time-of-day (AM- or PM-rush hours) and day-of-the-week (Monday-Thursday or Friday) are used to predict recurrent congestion duration. Models are fitted to data collected from a bottleneck on 1-93 in Salem, NH, over a period of 9 months. Results from the breakdown model, predict probabilities of recurrent congestion, are consistent with observed traffic and illustrate an upshift in breakdown probabilities between the AM- and PM-rush periods. Results from the regression model for congestion duration reveal the presences of significant interaction between time-of-day and day-of-the-week. Thus, the effect of time-of-day on congestion duration depends on the day-of-the-week. This work provides a simplification of recurrent congestion and recovery, very noisy processes. Simplification, conveying complex relationships with simple statistical summaries-facts, is a practical and powerful tool for traffic administrators to use in the decision-making process.
基金This study was financially supported by the International Foundation for Science(IFS).
文摘Introduction:This study investigated factors affecting farmers’participation in watershed management programs in the Northeastern highlands of Ethiopia by taking the Teleyayen sub-watershed as a case study.Data were collected from 215 farm households which were selected from the four villages using a multistage sampling procedure,involving a combination of purposive and random sampling.Data were gathered using a structured survey questionnaire,focus group discussion,and key informant interviews.Descriptive analysis,Pearson correlation analysis,and regression analysis were employed to analyze the data.Results:Findings of this study showed that farmer’s perception has a strong positive correlation(r=0.612,P=0.000)with the farmer’s decision to participate in the watershed management programs followed by government support(r=0.163,P=0.017),while the slope of the farmland and the gender of the household head have shown significant and negative associations.The binary logistic regression analysis also revealed that six independent variables were significant in explaining the factors affecting the farmers’decision to participate in watershed management programs.These variables were land redistribution,gender,agricultural labor force,extension service,farm size,and slope.Of these,land redistribution,gender,agricultural labor force,extension service,and slope of the farmland indicated a negative influence,while farm size of a household exerted a positive impact.The study also examined the role of discrete variables in explaining variations of variables in affecting the farmers’decision to participate in the programs.Thus,two variables found to be significant.These variables are the gender of the household head and land tenure security.Accordingly,the chi-square result of the variable(χ^(2)=9.052)of gender was found to be statistically significant at the 95%level of significance.Similarly,the chi-square result(X^(2)=8.792)of land tenure security was found to be statistically significant at the 95%level of significance.Conclusions:The result of the study suggests to work on raising the awareness of farmers’about the long-term benefits of the watershed programs and to design a strategy to diversify their livelihoods.