The modeling of dynamical systems from a time series implemented by our DSA program introduces binary trees of height D with all leaves on the same level, and the related subtrees of height L 〈 D. These are called e-...The modeling of dynamical systems from a time series implemented by our DSA program introduces binary trees of height D with all leaves on the same level, and the related subtrees of height L 〈 D. These are called e-trees and e-subtrees. The recursive and nonrecursive versions of the traversal algorithms for the trees with dynamically created nodes are discussed. The original nonrecursive algorithms that return the pointer to the next node in preorder, inorder and postorder traversals are presented. The space-time complexity analysis shows and the execution time measurements confirm that for these O(2D) algorithms, the recursive versions have approximately 10-25% better time constants. Still, the use of nonrecursive algorithms may be more appropriate in several occasions.展开更多
基于Petersen图,提出了Binary Tree Petersen的网络结构,并对其特性进行了研究,证明了Binary Tree Petersen网络具有正则性以及良好的可扩展性,同时还具有比RP(k)、2-DToms更短的直径和良好的并行能力.另外,还基于Binary Tree P...基于Petersen图,提出了Binary Tree Petersen的网络结构,并对其特性进行了研究,证明了Binary Tree Petersen网络具有正则性以及良好的可扩展性,同时还具有比RP(k)、2-DToms更短的直径和良好的并行能力.另外,还基于Binary Tree Petersen网络分别给出了其上的单播和广播路由算法,证明了通信效率都为2j+4.展开更多
A binary tree can be represented by a code reflecting the traversal of the corresponding regular binary tree in given monotonic order. A different coding scheme based on the branches of a regular binary tree with n-no...A binary tree can be represented by a code reflecting the traversal of the corresponding regular binary tree in given monotonic order. A different coding scheme based on the branches of a regular binary tree with n-nodes is proposed. It differs from the coding scheme generally used and makes no distinction between internal nodes and terminal nodes. A code of a regular binary tree with nnodes is formed by labeling the left branches by O’s and the right branches by l’s and then traversing these branches in pre-order. Root is always assumed to be on a left branch.展开更多
Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatoria...Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems.展开更多
Based on the graphic theory and improved genetic algorithm,an improved genetic algorithm to search the minimum spanning trees is given . The algorithm uses binary code to represent the problem of minimum spanning tree...Based on the graphic theory and improved genetic algorithm,an improved genetic algorithm to search the minimum spanning trees is given . The algorithm uses binary code to represent the problem of minimum spanning trees. It designs the corresponding fitness function,operator and few controlling strategies to improve its speed and evolutionary efficiency.Only one solution can be gotten with running traditional al-gorithem atone time.The new algorithm can get a set of the solutions with higher probability in a shorter time.The experiment shows that it has a better performance than traditional methods.展开更多
Based on the analysis of previous genetic algorithms (GAs) for TSP, a novel method called Ge- GA is proposed. It combines gene pool and GA so as to direct the evolution of the whole population. The core of Ge- GA is t...Based on the analysis of previous genetic algorithms (GAs) for TSP, a novel method called Ge- GA is proposed. It combines gene pool and GA so as to direct the evolution of the whole population. The core of Ge- GA is the construction of gene pool and how to apply it to GA. Different from standard GAs, Ge- GA aims to enhance the ability of exploration and exploitation by incorporating global search with local search. On one hand a local search called Ge- Lo-calSearch operator is proposed to improve the solution quality, on the other hand the modified Inver-Over operator called Ge InverOver is considered as a global search mechanism to expand solution space of local minimal. Both of these operators are based on the gene pool. Our algorithm is applied to 11 well-known traveling salesman problems whose numbers of cities are from 70 to 1577 cities. The experiments results indicate that Ge- GA has great robustness for TSP. For each test instance, the average value of solution quality, found in accepted time, stays within 0. 001% from the optimum.展开更多
With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorith...With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method.展开更多
Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassem...Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.展开更多
In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the featu...In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the feature space randomly.Thus,a large number of trees are required to ensure the performance of the ensemble model.This random rotation method is theoretically feasible,but it requires massive computing resources,potentially restricting its applications.A multimodal genetic algorithm based rotation forest(MGARF)algorithm is proposed in this paper to solve this problem.It is a tree-based ensemble learning algorithm for classification,taking advantage of the characteristic of trees to inject randomness by feature rotation.However,this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method.The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets.Experimental results show that the MGARF method outperforms the other methods,and the number of base learners in MGARF models is much fewer.展开更多
A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorith...A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.展开更多
In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w...In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.展开更多
The electrical system of CNC machine tool is very complex which involves many uncertain factors and dynamic stochastic characteristics when failure occurs.Therefore,the traditional system reliability analysis method,f...The electrical system of CNC machine tool is very complex which involves many uncertain factors and dynamic stochastic characteristics when failure occurs.Therefore,the traditional system reliability analysis method,fault tree analysis(FTA)method,based on static logic and static failure mechanism is no longer applicable for dynamic systems reliability analysis.Dynamic fault tree(DFT)analysis method can solve this problem effectively.In this method,DFT first should be pretreated to get a simplified fault tree(FT);then the FT was modularized to get the independent static subtrees and dynamic subtrees.Binary decision diagram(BDD)analysis method was used to analyze static subtrees,while an approximation algorithm was used to deal with dynamic subtrees.When the scale of each subtree is smaller than the system scale,the analysis efficiency can be improved significantly.At last,the usefulness of this DFT analysis method was proved by applying it to analyzing the reliability of electrical system.展开更多
Molecular programming is applied to minimum spanning problem whose solution requires encoding of real values in DNA strands. A new encoding scheme is proposed for real values that is biologically plausible and has a f...Molecular programming is applied to minimum spanning problem whose solution requires encoding of real values in DNA strands. A new encoding scheme is proposed for real values that is biologically plausible and has a fixed code length. According to the characteristics of the problem, a DNA algorithm solving the minimum spanning tree problem is given. The effectiveness of the proposed method is verified by simulation. The advantages and disadvantages of this algorithm are discussed.展开更多
文摘The modeling of dynamical systems from a time series implemented by our DSA program introduces binary trees of height D with all leaves on the same level, and the related subtrees of height L 〈 D. These are called e-trees and e-subtrees. The recursive and nonrecursive versions of the traversal algorithms for the trees with dynamically created nodes are discussed. The original nonrecursive algorithms that return the pointer to the next node in preorder, inorder and postorder traversals are presented. The space-time complexity analysis shows and the execution time measurements confirm that for these O(2D) algorithms, the recursive versions have approximately 10-25% better time constants. Still, the use of nonrecursive algorithms may be more appropriate in several occasions.
文摘基于Petersen图,提出了Binary Tree Petersen的网络结构,并对其特性进行了研究,证明了Binary Tree Petersen网络具有正则性以及良好的可扩展性,同时还具有比RP(k)、2-DToms更短的直径和良好的并行能力.另外,还基于Binary Tree Petersen网络分别给出了其上的单播和广播路由算法,证明了通信效率都为2j+4.
文摘A binary tree can be represented by a code reflecting the traversal of the corresponding regular binary tree in given monotonic order. A different coding scheme based on the branches of a regular binary tree with n-nodes is proposed. It differs from the coding scheme generally used and makes no distinction between internal nodes and terminal nodes. A code of a regular binary tree with nnodes is formed by labeling the left branches by O’s and the right branches by l’s and then traversing these branches in pre-order. Root is always assumed to be on a left branch.
基金This work is supported by the National Natural Science Foundation of China under Grant 61772179the Hunan Provincial Natural Science Foundation of China under Grant 2019JJ40005+3 种基金the Science and Technology Plan Project of Hunan Province under Grant 2016TP1020the Double First-Class University Project of Hunan Province under Grant Xiangjiaotong[2018]469the Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University under Grant IIPA19K02the Science Foundation of Hengyang Normal University under Grant 19QD13.
文摘Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems.
文摘Based on the graphic theory and improved genetic algorithm,an improved genetic algorithm to search the minimum spanning trees is given . The algorithm uses binary code to represent the problem of minimum spanning trees. It designs the corresponding fitness function,operator and few controlling strategies to improve its speed and evolutionary efficiency.Only one solution can be gotten with running traditional al-gorithem atone time.The new algorithm can get a set of the solutions with higher probability in a shorter time.The experiment shows that it has a better performance than traditional methods.
基金Supported by the National Natural Science Foundation of China(70071042,60073043,and 60133010)
文摘Based on the analysis of previous genetic algorithms (GAs) for TSP, a novel method called Ge- GA is proposed. It combines gene pool and GA so as to direct the evolution of the whole population. The core of Ge- GA is the construction of gene pool and how to apply it to GA. Different from standard GAs, Ge- GA aims to enhance the ability of exploration and exploitation by incorporating global search with local search. On one hand a local search called Ge- Lo-calSearch operator is proposed to improve the solution quality, on the other hand the modified Inver-Over operator called Ge InverOver is considered as a global search mechanism to expand solution space of local minimal. Both of these operators are based on the gene pool. Our algorithm is applied to 11 well-known traveling salesman problems whose numbers of cities are from 70 to 1577 cities. The experiments results indicate that Ge- GA has great robustness for TSP. For each test instance, the average value of solution quality, found in accepted time, stays within 0. 001% from the optimum.
基金supported by the State Grid Liaoning Electric Power Supply CO, LTDthe financial support for the “Key Technology and Application Research of the Self-Service Grid Big Data Governance (No.SGLNXT00YJJS1800110)”
文摘With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method.
基金supported by the National High Technology Research and Development Program of China(2006AA04Z427).
文摘Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.
基金Project(61603274)supported by the National Natural Science Foundation of ChinaProject(2017KJ249)supported by the Research Project of Tianjin Municipal Education Commission,China。
文摘In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the feature space randomly.Thus,a large number of trees are required to ensure the performance of the ensemble model.This random rotation method is theoretically feasible,but it requires massive computing resources,potentially restricting its applications.A multimodal genetic algorithm based rotation forest(MGARF)algorithm is proposed in this paper to solve this problem.It is a tree-based ensemble learning algorithm for classification,taking advantage of the characteristic of trees to inject randomness by feature rotation.However,this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method.The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets.Experimental results show that the MGARF method outperforms the other methods,and the number of base learners in MGARF models is much fewer.
文摘A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.
基金the National Natural Science Foundation of China under Grant 61502411Natural Science Foundation of Jiangsu Province under Grant BK20150432 and BK20151299+7 种基金Natural Science Research Project for Universities of Jiangsu Province under Grant 15KJB520034China Postdoctoral Science Foundation under Grant 2015M581843Jiangsu Provincial Qinglan ProjectTeachers Overseas Study Program of Yancheng Institute of TechnologyJiangsu Provincial Government Scholarship for Overseas StudiesTalents Project of Yancheng Institute of Technology under Grant KJC2014038“2311”Talent Project of Yancheng Institute of TechnologyOpen Fund of Modern Agricultural Resources Intelligent Management and Application Laboratory of Huzhou Normal University.
文摘In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.
文摘The electrical system of CNC machine tool is very complex which involves many uncertain factors and dynamic stochastic characteristics when failure occurs.Therefore,the traditional system reliability analysis method,fault tree analysis(FTA)method,based on static logic and static failure mechanism is no longer applicable for dynamic systems reliability analysis.Dynamic fault tree(DFT)analysis method can solve this problem effectively.In this method,DFT first should be pretreated to get a simplified fault tree(FT);then the FT was modularized to get the independent static subtrees and dynamic subtrees.Binary decision diagram(BDD)analysis method was used to analyze static subtrees,while an approximation algorithm was used to deal with dynamic subtrees.When the scale of each subtree is smaller than the system scale,the analysis efficiency can be improved significantly.At last,the usefulness of this DFT analysis method was proved by applying it to analyzing the reliability of electrical system.
文摘Molecular programming is applied to minimum spanning problem whose solution requires encoding of real values in DNA strands. A new encoding scheme is proposed for real values that is biologically plausible and has a fixed code length. According to the characteristics of the problem, a DNA algorithm solving the minimum spanning tree problem is given. The effectiveness of the proposed method is verified by simulation. The advantages and disadvantages of this algorithm are discussed.