期刊文献+

二次检索

题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息

年份

共找到4篇文章
< 1 >
每页显示 20 50 100
Optical binding forces between plasmonic nanocubes: A numerical study based on discrete-dipole approximation 被引量:1
1
作者 张小明 肖君军 张强 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期390-394,共5页
Plasmonic nanocubes are ideal candidates in realizing controllable reflectance surfaces, unidirectional nanoantennas and other plasmon-associated applications. In this work, we perform full-wave calculations of the op... Plasmonic nanocubes are ideal candidates in realizing controllable reflectance surfaces, unidirectional nanoantennas and other plasmon-associated applications. In this work, we perform full-wave calculations of the optical forces in threedimensional gold nanocube dimers. For a fixed center-to-center separation, the rotation of the plasmonic nanocube leads to a slight shift of the plasmonic resonance wavelength and a strong change in the optical binding forces. The effective gap and the near field distribution between the two nanocubes are shown to be crucial to this force variation. We further find that the optical binding force is dominated by the scattering process while the optical forces in the wavevector direction are affected by both scattering and absorption, making the former relatively more sensitive to the rotation of(an effective gap between) the nanocubes. Our results would be useful for building all-optically controllable meta-surfaces. 展开更多
关键词 optical binding force nanocube dimer surface plasmon resonance
下载PDF
On chip chiral and plasmonic hybrid dimer or tetramer:Generic way to reverse longitudinal and lateral optical binding forces
2
作者 Sudipta Biswas Roksana Khanam Rumi +2 位作者 Tasnia Rahman Raima Saikat Chandra Das M R C Mahdy 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期305-316,共12页
For both the longitudinal binding force and the lateral binding force,a generic way of controlling the mutual attraction and repulsion(usually referred to as reversal of optical binding force)between chiral and plasmo... For both the longitudinal binding force and the lateral binding force,a generic way of controlling the mutual attraction and repulsion(usually referred to as reversal of optical binding force)between chiral and plasmonic hybrid dimers or tetramers has not been reported so far.In this paper,by using a simple plane wave and an onchip configuration,we propose a possible generic way to control the binding force for such hybrid objects in both the near-field region and the far-field region.We also investigate different inter-particle distances while varying the wavelengths of light for each inter-particle distance throughout the investigations.First of all,for the case of longitudinal binding force,we find that chiral-plasmonic hybrid dimer pairs do not exhibit any reversal of optical binding force in the near-field region nor in the far-field region when the wavelength of light is varied in an air medium.However,when the same hybrid system of nanoparticles is placed over a plasmonic substrate,a possible chip,it is possible to achieve a reversal of the longitudinal optical binding force.Later,for the case of lateral optical binding force,we investigate a setup where we place the chiral and plasmonic tetramers on a plasmonic substrate by using two chiral nanoparticles and two plasmonic nanoparticles,with the setup illuminated by a circularly polarized plane wave.By applying the left-handed and the right-handed circular polarization state of light,we also observe the near-field and the far-field reversal of lateral optical binding force for both cases.As far as we know,so far,no work has been reported in the literature on the generic way of reversing the longitudinal optical binding force and the lateral optical binding force of such hybrid objects.Such a generic way of controlling optical binding forces can have important applications in different fields of science and technology in the near future. 展开更多
关键词 longitudinal binding force PLASMONICS CHIRALITY optical force
下载PDF
Analysis on Interface Shear Stress of Thermally InsulatedOcean Pipelines Under Installation 被引量:2
3
作者 闫澍旺 田英辉 +2 位作者 刘润 王章岭 王金英 《China Ocean Engineering》 SCIE EI 2006年第2期315-323,共9页
It has been proved that the thermally insulated ocean pipeline has advantages over the conventional pipe-in-pipe pipeline. The risk of using the thermally insulated pipeline is that the exterior layers covering the st... It has been proved that the thermally insulated ocean pipeline has advantages over the conventional pipe-in-pipe pipeline. The risk of using the thermally insulated pipeline is that the exterior layers covering the steel pipe may be. pulled off if the shear stress on the interface induced by the pullout fore from the tensioner is greater than the binding fore between two neighboring layers during installation. This paper develops a procedure to calculate the shear stress on the interface. The binding force between two neighboring layers can be determined with full scale model tests. The safety of the thermally insulated pipe under installation can then be checked by comparison of the interface shear stress with the binding force. 展开更多
关键词 thermally insulated pipelines shear stress INSTALLATION binding force
下载PDF
Adsorption and desorption of SO_2, NO and chlorobenzene on activated carbon 被引量:9
4
作者 Yuran Li Yangyang Guo +1 位作者 Tingyu Zhu Song Ding 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第5期128-135,共8页
Activated carbon(AC) is very effective for multi-pollutant removal; however, the complicated components in flue gas can influence each other's adsorption. A series of adsorption experiments for multicomponents, inc... Activated carbon(AC) is very effective for multi-pollutant removal; however, the complicated components in flue gas can influence each other's adsorption. A series of adsorption experiments for multicomponents, including SO_2, NO, chlorobenzene and H2 O,on AC were performed in a fixed-bed reactor. For single-component adsorption, the adsorption amount for chlorobenzene was larger than for SO_2 and NO on the AC. In the multi-component atmosphere, the adsorption amount decreased by 27.6% for chlorobenzene and decreased by 95.6% for NO, whereas it increased by a factor of two for SO_2,demonstrating that a complex atmosphere is unfavorable for chlorobenzene adsorption and inhibits NO adsorption. In contrast, it is very beneficial for SO_2 adsorption. The temperature-programmed desorption(TPD) results indicated that the binding strength between the gas adsorbates and the AC follows the order of SO_2〉 chlorobenzene 〉 NO. The adsorption amount is independent of the binding strength. The presence of H2 O enhanced the component effects, while it weakened the binding force between the gas adsorbates and the AC. AC oxygen functional groups were analyzed using TPD and X-ray photoelectron spectroscopy(XPS) measurements. The results reveal the reason why the chlorobenzene adsorption is less affected by the presence of other components. Lactone groups partly transform into carbonyl and quinone groups after chlorobenzene desorption. The chlorobenzene adsorption increases the number of C = O groups, which explains the positive effect of chlorobenzene on SO_2 adsorption and the strong NO adsorption. 展开更多
关键词 Activated carbon Multi-components Functional groups binding force Flue gas
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部