Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global featur...Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global features extracted.To solve these problems,a facial expression feature extraction method is proposed based on improved LBP.Firstly,LBP is converted into double local binary pattern(DLBP).Then by combining Taylor expansion(TE)with DLBP,DLBP-TE algorithm is obtained.Finally,the DLBP-TE algorithm combined with extreme learning machine(ELM)is applied in seven kinds of ficial expression images and the corresponding experiments are carried out in Japanese adult female facial expression(JAFFE)database.The results show that the proposed method can significantly improve facial expression recognition rate.展开更多
In nowadays society,the safety of the elderly population is becoming a pressing concern,especially for those who live alone.There might be daily risks such as accidental falling or treatment attack on them.Aiming at t...In nowadays society,the safety of the elderly population is becoming a pressing concern,especially for those who live alone.There might be daily risks such as accidental falling or treatment attack on them.Aiming at these problems,indoor positioning could be a critical way to monitor their states.With the rapidly development of the imaging techniques,wearable and portable cameras are very popular,which could be set on human individual.And in view of the advantages of the visual positioning,the authors propose a binocular visual positioning algorithm to real-timely locate the elderly indoor.In this paper,the imaging model has been established with the corrected image data from the binocular camera;then feature extraction has been completed to provide reference to adjacent image matching based on the binary robust independent elementary feature(BRIEF)descriptor,finally the camera movement and the states of the elderly have been estimated to distinguish their falling risk.In the experiments,the real-sense D435i sensors were adopted as the binocular cameras to obtain indoor images,and three experimental scenarios have been carried out to test the proposed method.The results show that the proposed algorithm can effectively locate the elderly indoor and improve the real-time monitoring capability.展开更多
This article presents a good robust and real-time system scheme of the mobile robot obstacle detection and navigation, which principle of work is based on the feature descriptor SURF. In this scheme, firstly, the imag...This article presents a good robust and real-time system scheme of the mobile robot obstacle detection and navigation, which principle of work is based on the feature descriptor SURF. In this scheme, firstly, the image information of the mobile robot path was captured by the binocular camera; then the feature points were extracted and corresponding matched using SURF to the binocular images as the undetected obstacles; finally fixed the position of the objective by the parallax between the matching points combining with the binocular vision calibration model. Theoretical derivation and experimental results show that this scheme is more accurate for the detection and navigation of the interest points. It has fast matching speed and high accuracy and low error. So, it has certain practical effect and popularizing value for the mobile robot real-time obstacle avoidance and navigation.展开更多
Variety identification is important for maize breeding, processing and trade. The computer vision technique has been widely applied to maize variety identification. In this paper, computer vision technique has been su...Variety identification is important for maize breeding, processing and trade. The computer vision technique has been widely applied to maize variety identification. In this paper, computer vision technique has been summarized from the following technical aspects including image acquisition, image processing, characteristic parameter extraction, pattern recognition and programming softwares. In addition, the existing problems during the application of this technique to maize variety identification have also been analyzed and its development tendency is forecasted.展开更多
Deep convolutional neural networks(DCNNs)are widely used in content-based image retrieval(CBIR)because of the advantages in image feature extraction.However,the training of deep neural networks requires a large number...Deep convolutional neural networks(DCNNs)are widely used in content-based image retrieval(CBIR)because of the advantages in image feature extraction.However,the training of deep neural networks requires a large number of labeled data,which limits the application.Self-supervised learning is a more general approach in unlabeled scenarios.A method of fine-tuning feature extraction networks based on masked learning is proposed.Masked autoencoders(MAE)are used in the fine-tune vision transformer(ViT)model.In addition,the scheme of extracting image descriptors is discussed.The encoder of the MAE uses the ViT to extract global features and performs self-supervised fine-tuning by reconstructing masked area pixels.The method works well on category-level image retrieval datasets with marked improvements in instance-level datasets.For the instance-level datasets Oxford5k and Paris6k,the retrieval accuracy of the base model is improved by 7%and 17%compared to that of the original model,respectively.展开更多
The accurate measurement of kinematic parameters in satellite separation tests has great significance in evaluating separation performance. A novel study is made on the measuring accuracy of monocular and binocular, w...The accurate measurement of kinematic parameters in satellite separation tests has great significance in evaluating separation performance. A novel study is made on the measuring accuracy of monocular and binocular, which are the two main vision measurement methods used for kinematic parameters. As satellite separation process is transient and high-dynamic, it will bring more extraction errors to the binocular. Based on the design approach of intersection measure and variance ratio, the monocular method reflects higher precision, simpler structure and easier calibration for level satellite separation. In ground separation tests, a high-speed monocular system is developed to gain and analyze twelve kinematic parameters of a small satellite. Research shows that this monocular method can be widely applied for its high precision, with position accuracy of 0.5 mm, speed accuracy of 5 mm/s, and angular velocity accuracy of 1 (°)/s.展开更多
The variation of joint groove size during tungsten inert gas (TIG) welding will result in the non-uniform fill of deposited metal. To solve this problem, an adaptive fill control system was developed based on laser ...The variation of joint groove size during tungsten inert gas (TIG) welding will result in the non-uniform fill of deposited metal. To solve this problem, an adaptive fill control system was developed based on laser vision sensing. The system hardware consists of a modular development kit (MDK) as the real-time image capturing system, a computer as the controller, a D/A conversion card as the interface of controlled variable output, and a DC TIG welding system as the controlled device. The system software is developed and the developed feature extraction algorithm and control strategy are of good accuracy and robustness. Experimental results show that the system can implement adaptive fill of melting metal with high stability, reliability and accuracy. The groove is filled well and the quality of the weld formation satisfies the relevant industry criteria.展开更多
Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on ...Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their features.The proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their characteristics.Then,two distinct kinds of features are obtained from the segmented images to help identify the objects of interest.An Artificial Neural Network(ANN)is then used to recognize the objects based on their features.Experiments were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested approach.The findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively.展开更多
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh...Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.展开更多
文摘Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global features extracted.To solve these problems,a facial expression feature extraction method is proposed based on improved LBP.Firstly,LBP is converted into double local binary pattern(DLBP).Then by combining Taylor expansion(TE)with DLBP,DLBP-TE algorithm is obtained.Finally,the DLBP-TE algorithm combined with extreme learning machine(ELM)is applied in seven kinds of ficial expression images and the corresponding experiments are carried out in Japanese adult female facial expression(JAFFE)database.The results show that the proposed method can significantly improve facial expression recognition rate.
基金This work was supported by the National Natural Science Foundation of China(No.61803203).
文摘In nowadays society,the safety of the elderly population is becoming a pressing concern,especially for those who live alone.There might be daily risks such as accidental falling or treatment attack on them.Aiming at these problems,indoor positioning could be a critical way to monitor their states.With the rapidly development of the imaging techniques,wearable and portable cameras are very popular,which could be set on human individual.And in view of the advantages of the visual positioning,the authors propose a binocular visual positioning algorithm to real-timely locate the elderly indoor.In this paper,the imaging model has been established with the corrected image data from the binocular camera;then feature extraction has been completed to provide reference to adjacent image matching based on the binary robust independent elementary feature(BRIEF)descriptor,finally the camera movement and the states of the elderly have been estimated to distinguish their falling risk.In the experiments,the real-sense D435i sensors were adopted as the binocular cameras to obtain indoor images,and three experimental scenarios have been carried out to test the proposed method.The results show that the proposed algorithm can effectively locate the elderly indoor and improve the real-time monitoring capability.
文摘This article presents a good robust and real-time system scheme of the mobile robot obstacle detection and navigation, which principle of work is based on the feature descriptor SURF. In this scheme, firstly, the image information of the mobile robot path was captured by the binocular camera; then the feature points were extracted and corresponding matched using SURF to the binocular images as the undetected obstacles; finally fixed the position of the objective by the parallax between the matching points combining with the binocular vision calibration model. Theoretical derivation and experimental results show that this scheme is more accurate for the detection and navigation of the interest points. It has fast matching speed and high accuracy and low error. So, it has certain practical effect and popularizing value for the mobile robot real-time obstacle avoidance and navigation.
基金Special Fund for Science & Technology Research of Education Commission,Chongqing(KJ101302)~~
文摘Variety identification is important for maize breeding, processing and trade. The computer vision technique has been widely applied to maize variety identification. In this paper, computer vision technique has been summarized from the following technical aspects including image acquisition, image processing, characteristic parameter extraction, pattern recognition and programming softwares. In addition, the existing problems during the application of this technique to maize variety identification have also been analyzed and its development tendency is forecasted.
基金the Project of Introducing Urgently Needed Talents in Key Supporting Regions of Shandong Province,China(No.SDJQP20221805)。
文摘Deep convolutional neural networks(DCNNs)are widely used in content-based image retrieval(CBIR)because of the advantages in image feature extraction.However,the training of deep neural networks requires a large number of labeled data,which limits the application.Self-supervised learning is a more general approach in unlabeled scenarios.A method of fine-tuning feature extraction networks based on masked learning is proposed.Masked autoencoders(MAE)are used in the fine-tune vision transformer(ViT)model.In addition,the scheme of extracting image descriptors is discussed.The encoder of the MAE uses the ViT to extract global features and performs self-supervised fine-tuning by reconstructing masked area pixels.The method works well on category-level image retrieval datasets with marked improvements in instance-level datasets.For the instance-level datasets Oxford5k and Paris6k,the retrieval accuracy of the base model is improved by 7%and 17%compared to that of the original model,respectively.
基金Project(50975280)supported by the National Natural Science Foundation of ChinaProject(NCET-08-0149)supported by Program for New Century Excellent Talents in Universities of China
文摘The accurate measurement of kinematic parameters in satellite separation tests has great significance in evaluating separation performance. A novel study is made on the measuring accuracy of monocular and binocular, which are the two main vision measurement methods used for kinematic parameters. As satellite separation process is transient and high-dynamic, it will bring more extraction errors to the binocular. Based on the design approach of intersection measure and variance ratio, the monocular method reflects higher precision, simpler structure and easier calibration for level satellite separation. In ground separation tests, a high-speed monocular system is developed to gain and analyze twelve kinematic parameters of a small satellite. Research shows that this monocular method can be widely applied for its high precision, with position accuracy of 0.5 mm, speed accuracy of 5 mm/s, and angular velocity accuracy of 1 (°)/s.
文摘The variation of joint groove size during tungsten inert gas (TIG) welding will result in the non-uniform fill of deposited metal. To solve this problem, an adaptive fill control system was developed based on laser vision sensing. The system hardware consists of a modular development kit (MDK) as the real-time image capturing system, a computer as the controller, a D/A conversion card as the interface of controlled variable output, and a DC TIG welding system as the controlled device. The system software is developed and the developed feature extraction algorithm and control strategy are of good accuracy and robustness. Experimental results show that the system can implement adaptive fill of melting metal with high stability, reliability and accuracy. The groove is filled well and the quality of the weld formation satisfies the relevant industry criteria.
基金supported by the MSIT(Ministry of Science and ICT)Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)+1 种基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R410),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/12/6).
文摘Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their features.The proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their characteristics.Then,two distinct kinds of features are obtained from the segmented images to help identify the objects of interest.An Artificial Neural Network(ANN)is then used to recognize the objects based on their features.Experiments were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested approach.The findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through Small Group Research Project under Grant Number RGP1/261/45.
文摘Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.