Cell-laden cardiac patches have recently been emerging to renew cellular sources for myocardial infarction(MI,commonly know as a heart attack)repair.However,the fabrication of cell-laden patches with porous structure ...Cell-laden cardiac patches have recently been emerging to renew cellular sources for myocardial infarction(MI,commonly know as a heart attack)repair.However,the fabrication of cell-laden patches with porous structure remains challenging due to the limitations of currently available hydrogels and existing processing techniques.The present study utilized a bioprinting technique to fabricate hydrogel patches and characterize them in terms of printability,mechanical and biological properties.Cell-laden hydrogel(or bio-ink)was formulated from alginate dialdehyde(ADA)and gelatin(GEL)to improve the printability,degradability as well as bioactivity.Five groups of hydrogel compositions were designed to investigate the influence of the oxidation degree of ADA and hydrogels concentration on the properties of printed scaffolds.ADA-GEL hydrogels have generally shown favorable for living cells(EA.hy926 cells and hybrid human umbilical vein endothelial cell line).The hydrogel with an oxidation degree of 10%and a concentration ratio of 70/30(or 10%ADA70-GEL30)demonstrated the best printability among the groups examined.Formulated hydrogels were also bioprinted with the living cells(EA.hy926),and the scaffolds printed were then subject to the cell culture for 7 days.Our results illustrate that the scaffolds bioprinted from 10%ADA70–GEL30 hydrogels had the best homogenous cell distribution and also the highest cell viability.Taken together,in the present study we synthesized a newly formulated bio-ink from ADA and GEL and for the fist time,used them to bioprint cardiac patches,which have the potential to be used in MI repair.展开更多
The therapeutic replacement of diseased tubular tissue is hindered by the availability and suitability of current donor, autologous and synthetically derived protheses. Artificially created, tissue engineered, constru...The therapeutic replacement of diseased tubular tissue is hindered by the availability and suitability of current donor, autologous and synthetically derived protheses. Artificially created, tissue engineered, constructs have the potential to alleviate these concerns with reduced autoimmune response, high anatomical accuracy, long-term patency and growth potential. The advent of 3D bioprinting technology has further supplemented the technological toolbox, opening up new biofabrication research opportunities and expanding the therapeutic potential of the field. In this review, we highlight the challenges facing those seeking to create artificial tubular tissue with its associated complex macro- and microscopic architecture. Current biofabrication approaches, including 3D printing techniques, are reviewed and future directions suggested.展开更多
背景:3D生物打印的应用愈加广泛,与之相关的生物墨水灭菌则非常重要,然而用于临床目的的生物墨水的灭菌问题尚未得到解决。目的:对用于3D生物打印的生物墨水灭菌技术的研究做一综述。方法:检索中国知网、万方数据、PubMed和Web of Scie...背景:3D生物打印的应用愈加广泛,与之相关的生物墨水灭菌则非常重要,然而用于临床目的的生物墨水的灭菌问题尚未得到解决。目的:对用于3D生物打印的生物墨水灭菌技术的研究做一综述。方法:检索中国知网、万方数据、PubMed和Web of Science数据库中相关文献,中文检索词为“3D生物打印、组织工程、增材制造、生物墨水、生物材料、灭菌、杀菌、无菌化”,英文检索词为“3D bioprinting,tissue engineering,additive manufacturing,bio-ink,biomaterials,sterilization,disinfect,aseptic”。最终纳入77篇相关文献进行综述。结果与结论:不同的灭菌方法在完成对3D生物打印的生物墨水灭菌的同时也会对生物墨水产生不良影响。①有些灭菌方法可损伤生物墨水的微观结构:比如射线辐射灭菌与紫外线产生的自由基会影响生物墨水的流体力学和可塑造性,过氧乙酸因其强氧化性溶解生物墨水的某些成分,对机械性能要求较高的材料应减少使用此种灭菌方法;②有些灭菌方法可破坏生物墨水所含生物大分子的活性:比如高压蒸汽灭菌的高能量水蒸汽、射线辐射灭菌与紫外线产生的自由基会导致蛋白质和酶等生物大分子的活性丧失,因此对需要生物大分子发挥活性的生物墨水应减少使用此种灭菌方法;③有些灭菌方法可残留毒性物质:如环氧乙烷灭菌后的残留物有致癌性,影响种子细胞的生存,所以对需要负载种子的生物墨水应减少使用此种灭菌方法;④有些灭菌方法对生物墨水不能完成彻底灭菌:如乙醇、抗菌素等方法在灭菌时受其自身性质的限定不能总是完成对生物墨水的灭菌,因此常需要与其他方法的联用,例如不同种类抗菌素的联用、过氧乙酸与乙醇联用等既能实现优势互补还不造成额外不良影响;⑤因此选择最适用于3D生物打印的生物墨水灭菌方法时应综合考虑材料本身特性、材料应用的目的、灭菌方式和灭菌原理。展开更多
文摘Cell-laden cardiac patches have recently been emerging to renew cellular sources for myocardial infarction(MI,commonly know as a heart attack)repair.However,the fabrication of cell-laden patches with porous structure remains challenging due to the limitations of currently available hydrogels and existing processing techniques.The present study utilized a bioprinting technique to fabricate hydrogel patches and characterize them in terms of printability,mechanical and biological properties.Cell-laden hydrogel(or bio-ink)was formulated from alginate dialdehyde(ADA)and gelatin(GEL)to improve the printability,degradability as well as bioactivity.Five groups of hydrogel compositions were designed to investigate the influence of the oxidation degree of ADA and hydrogels concentration on the properties of printed scaffolds.ADA-GEL hydrogels have generally shown favorable for living cells(EA.hy926 cells and hybrid human umbilical vein endothelial cell line).The hydrogel with an oxidation degree of 10%and a concentration ratio of 70/30(or 10%ADA70-GEL30)demonstrated the best printability among the groups examined.Formulated hydrogels were also bioprinted with the living cells(EA.hy926),and the scaffolds printed were then subject to the cell culture for 7 days.Our results illustrate that the scaffolds bioprinted from 10%ADA70–GEL30 hydrogels had the best homogenous cell distribution and also the highest cell viability.Taken together,in the present study we synthesized a newly formulated bio-ink from ADA and GEL and for the fist time,used them to bioprint cardiac patches,which have the potential to be used in MI repair.
基金We acknowledge the funding support from UK Engineering and Physical Sciences Research Council (EPSRC) on the Doctoral Prize Fellowship (Grant No. EP/N509760/1) for IH and the EngD studentship (Grant No. EP/L015595/1) for JL. JZS is funded by Overseas Scholarship Council and Ministry of Education in China. We also acknowledge the funding support from China-UK Research and Innovation Partnership Fund: Newton Fund Ph.D. placement programme. We thank the National Natural Science Foundation of China (No. 21534007), and the Beijing Municipal Science & Technology Commission for their financial support.
文摘The therapeutic replacement of diseased tubular tissue is hindered by the availability and suitability of current donor, autologous and synthetically derived protheses. Artificially created, tissue engineered, constructs have the potential to alleviate these concerns with reduced autoimmune response, high anatomical accuracy, long-term patency and growth potential. The advent of 3D bioprinting technology has further supplemented the technological toolbox, opening up new biofabrication research opportunities and expanding the therapeutic potential of the field. In this review, we highlight the challenges facing those seeking to create artificial tubular tissue with its associated complex macro- and microscopic architecture. Current biofabrication approaches, including 3D printing techniques, are reviewed and future directions suggested.