This study investigated the ability of microwave holography to accurately reconstruct the tissue structure of the human body. Numerical breast and head phantoms were imaged by 3D near-field holography using backscatte...This study investigated the ability of microwave holography to accurately reconstruct the tissue structure of the human body. Numerical breast and head phantoms were imaged by 3D near-field holography using backscattered waves obtained by a monostatic planar scan. Complex organizational structures have been reconstructed accurately and quickly. In addition, breasts with relatively simple histology could be reconstructed without the matching liquid.展开更多
Mass spectrometry imaging (MSI) technology can simultaneously obtain the spatial distribution of thousands of chemical compounds and has unique advantages compared to other techniques that allow mapping the surface of...Mass spectrometry imaging (MSI) technology can simultaneously obtain the spatial distribution of thousands of chemical compounds and has unique advantages compared to other techniques that allow mapping the surface of bio-tissue. Here, we combined an air flow-assisted desorption electrospray ionization (AFADESI) MSI device with a high-resolution mass spectrometer to optimize the system parameters and achieve more accurate spatial distribution characteristics for compounds of interest while investigating bio-tissue sections. The platform set-up, required instrumentation, sample pretreatment, parameter optimization and bio-tissue characterization are described and discussed.Finally, the parameter conditions that can provide optimal ionic intensity and enhanced resolution were confirmed. The reasonable resolution and sensitivity improvements of AFADESI-MSI have been achieved through tandem a high-resolution mass spectrometer system, therefore, it would be a promising technique for the bio-tissue imaging analysis.展开更多
For avoiding extra-damage to healthy tissues surrounding the focal point during high intensity focused ultrasound(HIFU) treatment in medical therapy, to reduce the ultrasonic intensity outside the focal point is expec...For avoiding extra-damage to healthy tissues surrounding the focal point during high intensity focused ultrasound(HIFU) treatment in medical therapy, to reduce the ultrasonic intensity outside the focal point is expected. Thus, the heating processes induced by moderate intensity focused ultrasound(MIFU) and enhanced by combined irradiation of laser pulses for bio-tissues are studied in details. For fresh bio-tissues, the enhanced thermal effects by pulsed laser combined with MIFU irradiation are observed experimentally. To explore the mechanisms of these effects, several tissue-mimicking materials composed of agar mixed with graphite powders are prepared and studied for comparison, but the laser-enhanced thermal effects in these mimicking materials are much less than that in the fresh bio-tissues. Therefore, it is suggested that the laser-enhanced thermal effects may be mainly attributed to bio-activities and related photo-bio-chemical effects of fresh tissues.展开更多
Accurate determination of the optical properties of biological tissues enables quantitative understanding of light propagation in these tissues for optical diagnosis and treatment applications.The absorption(μa)and s...Accurate determination of the optical properties of biological tissues enables quantitative understanding of light propagation in these tissues for optical diagnosis and treatment applications.The absorption(μa)and scattering(μs)coe±cients of biological tissues are inversely analyzed from their diffuse re°ectance(R)and total transmittance(T),which are measured using a double integrating spheres(DIS)system.The inversion algorithms,for example,inverse adding doubling method and inverse Monte Carlo method,are sensitive to noise signals during the DIS measurements,resulting in reduced accuracy during determination.In this study,we propose an arti ficial neural network(ANN)to estimateμa andμs at a target wavelength from the R and T spectra measured via the DIS to reduce noise in the optical properties.Approximate models of the optical properties and Monte Carlo calculations that simulated the DIS measurements were used to generate spectral datasets comprisingμa,μs,R and T.Measurement noise signals were added to R and T,and the ANN model was then trained using the noise-added datasets.Numerical results showed that the trained ANN model reduced the effects of noise inμa andμs estimation.Experimental veri fication indicated noise-reduced estimation from the R and T values measured by the DIS with a small number of scans on average,resulting in measurement time reduction.The results demonstrated the noise robustness of the proposed ANN-based method for optical properties determination and will contribute to shorter DIS measurement times,thus reducing changes in the optical properties due to desiccation of the samples.展开更多
To sharpen the imaging of structures, it is vital to develop a convenient and efficient quantitative algorithm of the optical coherence tomography (OCT) sampling. In this paper a new Monte Carlo model is set up and ho...To sharpen the imaging of structures, it is vital to develop a convenient and efficient quantitative algorithm of the optical coherence tomography (OCT) sampling. In this paper a new Monte Carlo model is set up and how light propagates in bio-tissue is analyzed in virtue of mathematics and physics equations. The relations,in which light intensity of Class 1 and Class 2 light with different wavelengths changes with their permeation depth,and in which Class 1 light intensity (signal light intensity) changes with the probing depth, and in which angularly resolved diffuse reflectance and diffuse transmittance change with the exiting angle, are studied. The results show that Monte Carlo simulation results are consistent with the theory data.展开更多
文摘This study investigated the ability of microwave holography to accurately reconstruct the tissue structure of the human body. Numerical breast and head phantoms were imaged by 3D near-field holography using backscattered waves obtained by a monostatic planar scan. Complex organizational structures have been reconstructed accurately and quickly. In addition, breasts with relatively simple histology could be reconstructed without the matching liquid.
基金supported by the National Instrumentation Program (No. 2016YFF0100304)the National Natural Science Foundation of China(Nos. 21335007, 81773678)+1 种基金the CAMS Innovation Fund for Medical Sciences(No. 2016-12 M-1-009)PUMC Youth Fund and the Fundamental Research Funds for the Central Universities(No. 3332015177)
文摘Mass spectrometry imaging (MSI) technology can simultaneously obtain the spatial distribution of thousands of chemical compounds and has unique advantages compared to other techniques that allow mapping the surface of bio-tissue. Here, we combined an air flow-assisted desorption electrospray ionization (AFADESI) MSI device with a high-resolution mass spectrometer to optimize the system parameters and achieve more accurate spatial distribution characteristics for compounds of interest while investigating bio-tissue sections. The platform set-up, required instrumentation, sample pretreatment, parameter optimization and bio-tissue characterization are described and discussed.Finally, the parameter conditions that can provide optimal ionic intensity and enhanced resolution were confirmed. The reasonable resolution and sensitivity improvements of AFADESI-MSI have been achieved through tandem a high-resolution mass spectrometer system, therefore, it would be a promising technique for the bio-tissue imaging analysis.
基金supported by the Special Funds for Quality Supervision,Inspection and Quarantine Research in Public Interest of China(Grant No.201510068)
文摘For avoiding extra-damage to healthy tissues surrounding the focal point during high intensity focused ultrasound(HIFU) treatment in medical therapy, to reduce the ultrasonic intensity outside the focal point is expected. Thus, the heating processes induced by moderate intensity focused ultrasound(MIFU) and enhanced by combined irradiation of laser pulses for bio-tissues are studied in details. For fresh bio-tissues, the enhanced thermal effects by pulsed laser combined with MIFU irradiation are observed experimentally. To explore the mechanisms of these effects, several tissue-mimicking materials composed of agar mixed with graphite powders are prepared and studied for comparison, but the laser-enhanced thermal effects in these mimicking materials are much less than that in the fresh bio-tissues. Therefore, it is suggested that the laser-enhanced thermal effects may be mainly attributed to bio-activities and related photo-bio-chemical effects of fresh tissues.
基金supported by the Japan Society for the Promotion of Science KAKENHI(Grant numbers:20H04549 and 19K12822)the Japan Science and Technology Agency ACT–X(Grant Number:JPMJAX21K7).
文摘Accurate determination of the optical properties of biological tissues enables quantitative understanding of light propagation in these tissues for optical diagnosis and treatment applications.The absorption(μa)and scattering(μs)coe±cients of biological tissues are inversely analyzed from their diffuse re°ectance(R)and total transmittance(T),which are measured using a double integrating spheres(DIS)system.The inversion algorithms,for example,inverse adding doubling method and inverse Monte Carlo method,are sensitive to noise signals during the DIS measurements,resulting in reduced accuracy during determination.In this study,we propose an arti ficial neural network(ANN)to estimateμa andμs at a target wavelength from the R and T spectra measured via the DIS to reduce noise in the optical properties.Approximate models of the optical properties and Monte Carlo calculations that simulated the DIS measurements were used to generate spectral datasets comprisingμa,μs,R and T.Measurement noise signals were added to R and T,and the ANN model was then trained using the noise-added datasets.Numerical results showed that the trained ANN model reduced the effects of noise inμa andμs estimation.Experimental veri fication indicated noise-reduced estimation from the R and T values measured by the DIS with a small number of scans on average,resulting in measurement time reduction.The results demonstrated the noise robustness of the proposed ANN-based method for optical properties determination and will contribute to shorter DIS measurement times,thus reducing changes in the optical properties due to desiccation of the samples.
文摘To sharpen the imaging of structures, it is vital to develop a convenient and efficient quantitative algorithm of the optical coherence tomography (OCT) sampling. In this paper a new Monte Carlo model is set up and how light propagates in bio-tissue is analyzed in virtue of mathematics and physics equations. The relations,in which light intensity of Class 1 and Class 2 light with different wavelengths changes with their permeation depth,and in which Class 1 light intensity (signal light intensity) changes with the probing depth, and in which angularly resolved diffuse reflectance and diffuse transmittance change with the exiting angle, are studied. The results show that Monte Carlo simulation results are consistent with the theory data.