Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of g...Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of graphene and carbon nanotubes(CNTs) is rarely reported.Herein,3 D neural-like hybrids of graphene(from reduced graphene oxide) and carbon nanotubes(CNTs) have been integrated via sp^(3)-like defect structure by a hydrothermal approach.The sp^(3)-like defect structure endows 3 D nanocarbon hybrids with an enhanced carrier transfer,high structural stability,and electrocatalytic durability.The neural-like structure is shown to demonstrate a cascade effect of charges and significant performances regarding bio-electrocatalysis and lithium-sulfur energy storage.The concept and mechanism of "sp^(3)-like defect structure" are proposed at an atomic/nanoscale to clarify the generation of rational structure as well as the cascade electron transfer.展开更多
基金a joint National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft(NSFC-DFG) project(NSFC grant 51861135313,DFG JA466/39-1)supported by National Natural Science Foundation of China(21706199)International Science & Technology Cooperation Program of China(2015DFE52870)Jilin Province Science and Technology Development Plan(20180101208JC)。
文摘Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of graphene and carbon nanotubes(CNTs) is rarely reported.Herein,3 D neural-like hybrids of graphene(from reduced graphene oxide) and carbon nanotubes(CNTs) have been integrated via sp^(3)-like defect structure by a hydrothermal approach.The sp^(3)-like defect structure endows 3 D nanocarbon hybrids with an enhanced carrier transfer,high structural stability,and electrocatalytic durability.The neural-like structure is shown to demonstrate a cascade effect of charges and significant performances regarding bio-electrocatalysis and lithium-sulfur energy storage.The concept and mechanism of "sp^(3)-like defect structure" are proposed at an atomic/nanoscale to clarify the generation of rational structure as well as the cascade electron transfer.