A mathematical model for the unsteady forced convection over rotating stretchable disk in nanofluid containing microorganisms and taking into account Stefan blowing effect is presented theoretically and numerically.Ap...A mathematical model for the unsteady forced convection over rotating stretchable disk in nanofluid containing microorganisms and taking into account Stefan blowing effect is presented theoretically and numerically.Appropriate transfonnations are used to transform the governing boundary layer equations into non-linear ordinary differential equations,before being solved numerically using the Runge-Kutta-Fehlberg method.The effect of the governing parameters on the dimensionless velocities,temperature,nanoparticle volume fraction(concentration),density of motile microorganisms as well as on the local skin friction,local Nusselt,Sherwood number and motile microorganisms numbers are thoroughly examined via graphs.It is observed that the Stefan blowing increases the local skin friction and reduces the heat transfer,mass transfer and microorganism transfer rates.The numerical results are in good agreement with those obtained from previous literature.Physical quantities results from this investigation show that the effects of higher disk stretching strength and suction case provides a good medium to enhance the heat,mass and microorganisms transfer compared to blowing case.展开更多
基金support from Universiti Sains Malaysia,RU Grant 1001/PMATHS/81125.
文摘A mathematical model for the unsteady forced convection over rotating stretchable disk in nanofluid containing microorganisms and taking into account Stefan blowing effect is presented theoretically and numerically.Appropriate transfonnations are used to transform the governing boundary layer equations into non-linear ordinary differential equations,before being solved numerically using the Runge-Kutta-Fehlberg method.The effect of the governing parameters on the dimensionless velocities,temperature,nanoparticle volume fraction(concentration),density of motile microorganisms as well as on the local skin friction,local Nusselt,Sherwood number and motile microorganisms numbers are thoroughly examined via graphs.It is observed that the Stefan blowing increases the local skin friction and reduces the heat transfer,mass transfer and microorganism transfer rates.The numerical results are in good agreement with those obtained from previous literature.Physical quantities results from this investigation show that the effects of higher disk stretching strength and suction case provides a good medium to enhance the heat,mass and microorganisms transfer compared to blowing case.