期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Photoactivated growth factor release from bio-orthogonally crosslinkedhydrogels for the regeneration of corneal defects
1
作者 Nae-Won Kang Youngyoon Amy Seo +6 位作者 Kevin JJackson Kyeongwoo Jang Euisun Song Uiyoung Han Fang Chen Sarah CHeilshorn David Myung 《Bioactive Materials》 SCIE CSCD 2024年第10期417-429,共13页
In situ-forming hydrogels are an attractive option for corneal regeneration, and the delivery of growth factorsfrom such constructs have the potential to improve re-epithelialization and stromal remodeling. However,ch... In situ-forming hydrogels are an attractive option for corneal regeneration, and the delivery of growth factorsfrom such constructs have the potential to improve re-epithelialization and stromal remodeling. However,challenges persist in controlling the release of therapeutic molecules from hydrogels. Here, an in situ-forming bioorthogonallycrosslinked hydrogel containing growth factors tethered via photocleavable linkages (PC-HAColhydrogel) was developed to accelerate corneal regeneration. Epidermal growth factor (EGF) was conjugated tothe hydrogel backbone through photo-cleavable (PC) spacer arms and was released when exposed to mild intensityultraviolet (UV) light (2–5 mW/cm2, 365 nm). The PC-HACol hydrogel rapidly gelled within a few minuteswhen applied to corneal defects, with excellent transparency and biocompatibility. After subsequentexposure to UV irradiation, the hydrogel promoted the proliferation and migration of corneal epithelial cells invitro. The rate of re-epithelialization was positively correlated to the frequency of irradiation, verified through exvivo rabbit cornea organ culture studies. In an in vivo rat corneal wound healing study, the PC-HACol hydrogelexposed to UV light significantly promoted re-epithelialization, the remodeling of stromal layers, and exhibitedsignificant anti-scarring effects, with minimal α-SMA and robust ALDH3A1 expression. Normal differentiation ofthe regenerated epithelia after healing was evaluated by expression of the corneal epithelial biomarker, CK12.The remodeled cornea exhibited full recovery of corneal thickness and layer number without hyperplasia of theepithelium. 展开更多
关键词 In situ-forming hydrogel bio-orthogonally crosslinked hydrogel Corneal regeneration Photo-responsive release Growth factor delivery
原文传递
Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation 被引量:2
2
作者 Jie Sun Yingkang Huang +8 位作者 Huan Zhao Junjie Niu Xuwei Ling Can Zhu Lin Wang Huilin Yang Zhilu Yang Guoqing Pan Qin Shi 《Bioactive Materials》 SCIE 2022年第3期1-14,共14页
Upon the osteoporotic condition,sluggish osteogenesis,excessive bone resorption,and chronic inflammation make the osseointegration of bioinert titanium(Ti)implants with surrounding bone tissues difficult,often lead to... Upon the osteoporotic condition,sluggish osteogenesis,excessive bone resorption,and chronic inflammation make the osseointegration of bioinert titanium(Ti)implants with surrounding bone tissues difficult,often lead to prosthesis loosening,bone collapse,and implant failure.In this study,we firstly designed clickable mussel-inspired peptides(DOPA-N3)and grafted them onto the surfaces of Ti materials through robust catechol-TiO2 coordinative interactions.Then,two dibenzylcyclooctyne(DBCO)-capped bioactive peptides RGD and BMP-2 bioactive domain(BMP-2)were clicked onto the DOPA-N3-coated Ti material surfaces via bio-orthogonal reaction.We characterized the surface morphology and biocompatibility of the Ti substrates and optimized the osteogenic capacity of Ti surfaces through adjusting the ideal ratios of BMP-2/RGD at 3:1.In vitro,the dual-functionalized Ti substrates exhibited excellent promotion on adhesion and osteogenesis of mesenchymal stem cells(MSCs),and conspicuous immunopolarization-regulation to shift macrophages to alternative(M2)phenotypes and inhibit inflammation,as well as enhancement of osseointegration and mechanical stability in osteoporotic rats.In summary,our biomimetic surface modification strategy by bio-orthogonal reaction provided a convenient and feasible method to resolve the bioinertia and clinical complications of Ti-based implants,which was conducive to the long-term success of Ti implants,especially in the osteoporotic or inflammatory conditions. 展开更多
关键词 Titanium implant Clickable mussel-inspired peptide bio-orthogonal reaction OSSEOINTEGRATION Immunopolarization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部