A bench-scale experiment for control of hydrogen sulfide (H2S) emissions was carried out continuously for nearly four months by using bio-trickling filter packed with ZX01 stuffing. The results suggested that the bi...A bench-scale experiment for control of hydrogen sulfide (H2S) emissions was carried out continuously for nearly four months by using bio-trickling filter packed with ZX01 stuffing. The results suggested that the bio-trickling filter had proven excellent performance over substantial operational periods. Removal efficiency of H2S was nearly 100% when volumetric loading of the bio-trickling filter varied from 0.64 g/(m^3·h) to 38.20 g/(m^3·h) and metabolism products of H2S were mainly composed of SO4^2-. When inlet concentration of H2S was 250 mg/m^3, the optimum gas retention time was 30 s and the optimum spray water flow rate was 0.005 9-0.012 L/(cm^2·h). The bio-trickling filter had good ability to resist shock of high volumetric loading, and was not blocked during experiments for nearly four months during which resistance was maintained at relatively lower value, so that the bio-trickling filter need not carry out back washing frequently and can be operated steadily for long-term.展开更多
Simultaneous removal of hydrogen sulfide (H2S) and volatile organic sulfur compounds (VOSCs) in off-gas mixture from a wastewater treatment plant (WWTP) is difficult due to the occasional inhibitory effects of H2S on ...Simultaneous removal of hydrogen sulfide (H2S) and volatile organic sulfur compounds (VOSCs) in off-gas mixture from a wastewater treatment plant (WWTP) is difficult due to the occasional inhibitory effects of H2S on VOSC degradation. In this study, a two-stage bio-trickling filter (BTF) system was developed to treat off-gas mixture from a real WWTP facility. At an empty bed retention time of 40 s, removal efficiencies of H2S, methanethiol, dimethyl sulfide, and dimethyl disulfide were 90.1, 88.4, 85.8 and 61.8%, respectively. Furthermore, the effect of lifting load shock on system performance was investigated and results indicated that removal of both H2S and VOSCs was slightly affected. Illumina Miseq sequencing revealed that the microbial community of first-stage BTF contained high abundance of H2S-affinity genera including Acidithiobacillus (51.43%), Metallibacterium (25.35%), and Thionomas (8.08%). Analysis of mechanism demonstrated that first stage of BTF removed 86.1% of H2S, mitigating the suppression on VOSC degradation in second stage of BTF. Overall, the twostage BTF system, an innovative bioprocess, can simultaneously remove H2S and VOSC.展开更多
基金Project supported by the Foundation for Scientific Research Col-laborating with Overseas Scholar of Heilongjiang Province, China (No. WC03305)the Foundation for Science and Technology of Harbin City, China (No. 2002AA4CS087)
文摘A bench-scale experiment for control of hydrogen sulfide (H2S) emissions was carried out continuously for nearly four months by using bio-trickling filter packed with ZX01 stuffing. The results suggested that the bio-trickling filter had proven excellent performance over substantial operational periods. Removal efficiency of H2S was nearly 100% when volumetric loading of the bio-trickling filter varied from 0.64 g/(m^3·h) to 38.20 g/(m^3·h) and metabolism products of H2S were mainly composed of SO4^2-. When inlet concentration of H2S was 250 mg/m^3, the optimum gas retention time was 30 s and the optimum spray water flow rate was 0.005 9-0.012 L/(cm^2·h). The bio-trickling filter had good ability to resist shock of high volumetric loading, and was not blocked during experiments for nearly four months during which resistance was maintained at relatively lower value, so that the bio-trickling filter need not carry out back washing frequently and can be operated steadily for long-term.
文摘Simultaneous removal of hydrogen sulfide (H2S) and volatile organic sulfur compounds (VOSCs) in off-gas mixture from a wastewater treatment plant (WWTP) is difficult due to the occasional inhibitory effects of H2S on VOSC degradation. In this study, a two-stage bio-trickling filter (BTF) system was developed to treat off-gas mixture from a real WWTP facility. At an empty bed retention time of 40 s, removal efficiencies of H2S, methanethiol, dimethyl sulfide, and dimethyl disulfide were 90.1, 88.4, 85.8 and 61.8%, respectively. Furthermore, the effect of lifting load shock on system performance was investigated and results indicated that removal of both H2S and VOSCs was slightly affected. Illumina Miseq sequencing revealed that the microbial community of first-stage BTF contained high abundance of H2S-affinity genera including Acidithiobacillus (51.43%), Metallibacterium (25.35%), and Thionomas (8.08%). Analysis of mechanism demonstrated that first stage of BTF removed 86.1% of H2S, mitigating the suppression on VOSC degradation in second stage of BTF. Overall, the twostage BTF system, an innovative bioprocess, can simultaneously remove H2S and VOSC.