期刊文献+
共找到13,377篇文章
< 1 2 250 >
每页显示 20 50 100
β-FeOOH Modified Sludge Biochar as Efficient Adsorbent for Phosphate Removal 被引量:1
1
作者 Yanping Zhang Jiahua Pei +2 位作者 Fen Li Lingchong Li Jiayu Tian 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第3期34-45,共12页
β⁃FeOOH modified sludge biochar(FSBC)was prepared and investigated in this work to remove phosphate from water via adsorption.FSBC exhibited superior adsorption performance for phosphate with the maximum adsorption a... β⁃FeOOH modified sludge biochar(FSBC)was prepared and investigated in this work to remove phosphate from water via adsorption.FSBC exhibited superior adsorption performance for phosphate with the maximum adsorption amount of 27.17 mg/g at 25℃.The specific adsorption capacity of FSBC was 57.8%higher than that of commercial activated carbon at pH 5 with the initial phosphate concentration of 10 mg/L.Coexisting anions can inhibit the adsorption of phosphate,but cations(Cr(VI)and Cd^(2+))exhibited some promotion effect.The results of kinetic and isotherm models and characterization analysis in combination indicated chemical adsorption,as electrostatic interaction,metal phosphate precipitation and hydrogen bonding may be the dominant process.The adsorption of phosphate onto FSBC was a monolayer adsorption,and the process was endothermic.After four adsorption/desorption cycles,the adsorption capacity of FSBC for phosphate decreased by 36.4%,which was in a distinct comparison with the 57.5%of SBC. 展开更多
关键词 sludge biochar β-FeOOH PHOSPHATE ADSORPTION
下载PDF
Feasibility Evaluation of Using Biochar-based Permeable Reactive Barrier for the Remediation of Mercury and Arsenic Composite Polluted Water Bodies
2
作者 Dilixiati·Abulizi 《Asian Agricultural Research》 2024年第5期15-19,共5页
This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition... This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency. 展开更多
关键词 biochar Goethite-modified biochar Permeable reactive barrier(PRB) Mercury and arsenic pollution Remediation efficiency
下载PDF
Biochar alleviates apple replant disease by reducing the growth of Fusarium oxysporum and regulating microbial communities
3
作者 Yinghao Liu Can Wang +5 位作者 Ran Chen Weitao Jiang Yun Li Chengmiao Yin Yanfang Wang Zhiquan Mao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期657-671,共15页
Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether bio... Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether biochar could promote plant growth and alleviate apple replant disease by reducing the growth of harmful soil microorganisms,changing soil microbial community structure and improving the soil environment.This experiment included five treatments:apple replant soil(CK),methyl bromide fumigation apple replant soil(FM),replant soil with biochar addition(2%),replant soil with F.oxysporum spore solution(8×10^(7)spores·mL^(-1)),and replant soil with biochar and F.oxysporum spore solution addition.Seedling biomass,the activity of antioxidant enzymes in the leaves and roots,and soil environmental variables were measured.Microbial community composition and community structure were analyzed using 16SrDNA and ITS2 gene sequencing.Biochar significantly reduced the abundance of F.oxysporum and increased soil microbial diversity and richness.Biochar also increased the soil enzyme activities(urease,invertase,neutral phosphatase,and catalase),the biomass(plant height,fresh weight,dry weight)and the activity of antioxidant enzymes(superoxide dismutase,peroxidase,and catalase).The root indexes of apple seedlings was also increased in replant soil by biochar.In sum,biochar promoted the growth of plants,improved the replant soil environment,and alleviated apple replant disease. 展开更多
关键词 biochar Fusarium oxysporum Apple replant disease Soil environment
下载PDF
Photocatalytic activation of sulfite by N-doped porous biochar/MnFe_(2)O_(4) interface-driven catalyst for efficient degradation of tetracycline
4
作者 Long Cheng Yuanhui Ji 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期481-494,共14页
A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline... A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline(TC).As the carrier of MnFe_(2)O_(4),NBCs were synthesized from alfalfa,which has large specific surface area,graphite like structure and hierarchical porous structure.The adsorption isotherm indicated that NBCs/MnFe_(2)O_(4)-2:1 had the best adsorption performance for TC(347.56 mg g^(-1)).Through synergistic adsorption and photocatalysis,the removal rate of TC reached 84%,which was significantly higher than that of MnFe_(2)O_(4).Electrochemical impedance spectroscopy(EIS)and Photoluminescence(PL)characterization results showed that the introduction of NBCs improved the separation efficiency of photogenerated electron and hole pairs and enhanced the photocatalytic performance.Moreover,the adsorption,degradation mechanism and degradation path of TC by the catalyst were systematically analyzed by coupling HPLC–MS measurement with the theoretical calculation.Considering the advantages of excellent degradation performance,low cost,easy separation and environmental friendliness of NBCs/MnFe_(2)O_(4),this work was expected to provide a new path for the practical application of biochar. 展开更多
关键词 biochar MnFe_(2)O_(4) SULFITE Adsorption PHOTOCATALYSIS
下载PDF
Exploring the combination of biochar‐amended soil and automated irrigation technology for water regulation and preservation in green infrastructure
5
作者 Honghu Zhu Yuanxu Huang +4 位作者 Haihong Song Jian Chen Songlei Han Tanwee Mazumder Ankit Garg 《Deep Underground Science and Engineering》 2024年第1期39-52,共14页
Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water content... Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water contents in the covers to maintain vegetation growth in semiarid conditions.In this study,biochar‐amended soil was combined with subsurface drip irrigation,and the water preservation characteristics of this treatment were investigated through a series of one‐dimensional soil column tests.To ascertain the best treatment method specific to semiarid climatic conditions,the test soil was amended with 0%,1%,3%,and 5%biochar.Automatic irrigation devices equipped with soil moisture sensors were used to control the subsurface water content with the aim of enhancing vegetation growth.Each soil column test lasted 150 h,during which the volumetric water contents and soil suction data were recorded.The experimental results reveal that the soil specimen amended with 3%biochar is the most water‐saving regardless of the time cost.Soil with a higher biochar content(e.g.,5%)consumes a more significant amount of water due to the enhancement of the water‐holding capacity.Based on the experimental results,it can be concluded that the appropriate ratio can be determined within 1%–3%,which can reduce not only the amount of irrigated/used water but also the time cost.Such technology can be explored for water content regulation in green infrastructure and the development of barriers for protecting the environment around deep underground waste containment. 展开更多
关键词 biochar drip irrigation UNDERGROUND water preservation water regulation
下载PDF
Adsorption Effect of Phosphate Modified Grape Branch Biochar on Cd2
6
作者 Yu Han Yuming Yin +4 位作者 Hao Zhang Sijing Sun Zuzhi Huang Yishu Deng Li Bao 《Journal of Geoscience and Environment Protection》 2024年第4期59-77,共19页
Two major problems facing agriculture at present are soil pollution and the disposal of solid wastes generated during plant growth. The method of preparing biochar from solid wastes produced by plants is a means of ma... Two major problems facing agriculture at present are soil pollution and the disposal of solid wastes generated during plant growth. The method of preparing biochar from solid wastes produced by plants is a means of maximizing the use of resources to combat the problem of soil pollution. In this study, we did not choose straw in the traditional sense but the waste branches from grape pruning, which has higher lignin cellulose, as the raw material. The biochar derived from grape branches pyrolyzed at 300˚C for two hours was utilized as a raw material to prepare modified biochar with varying concentrations of phosphoric acid. The adsorption performance and mechanism of Cd<sup>2 </sup> were explored through experiments involving different concentrations, addition amounts, reaction times, kinetic analyses, and isothermal adsorption tests. The findings indicated that the optimal adsorption of Cd<sup>2 </sup> occurred with a 20% phosphoric acid concentration, achieving the highest adsorption rate of 84.62%. At a dosage of 10 g/L, the maximum adsorption capacity reached 7.02 mg/g. The adsorption kinetics and isothermal adsorption of Cd<sup>2 </sup> on biochar modified with 0.2% phosphoric acid (0.2 PB) closely followed the pseudo-first-order kinetics model (R<sup>2</sup> > 0.98) and the Freundlich model (R<sup>2</sup> > 0.97), respectively. This suggests that the adsorption process involves both physical and chemical mechanisms. SEM and FTIR analyses revealed that phosphoric acid modification primarily increased the biochar’s specific surface area and enhanced certain original functional groups. The adsorption process predominantly involved rapid ion diffusion and chemical adsorption, as confirmed by kinetic analysis and isothermal adsorption model analysis. In summary, the adsorption efficiency of 0.2 PB significantly improved, showing potential and feasibility for heavy metal remediation in soil. This supports the environmentally friendly concept of “treating waste with waste”. 展开更多
关键词 Phosphate Modified Grape Branch biochar Adsorbs CD
下载PDF
Dredged marine soil stabilization using magnesia cement augmented with biochar/slag
7
作者 Chikezie Chimere Onyekwena Qi Li +5 位作者 Yong Wang Ishrat Hameed Alvi Wentao Li Yunlu Hou Xianwei Zhang Min Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1000-1017,共18页
Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materia... Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materials(SCMs)to stabilize DMS under ambient and carbon dioxide(CO_(2))curing conditions.Several proprietary experimental tests were conducted to investigate the stabilized DMS.Furthermore,the carbonation-induced mineralogical,thermal,and microstructural properties change of the samples were explored.The findings show that the compressive strength of the stabilized DMS fulfilled the 7-d requirement(0.7-2.1 MPa)for pavement and building foundations.Replacing rMgO with SCMs such as biochar or ground granulated blast-furnace slag(GGBS)altered the engineering properties and particle packing of the stabilized soils,thus influencing their performances.Biochar increased the porosity of the samples,facilitating higher CO_(2) uptake and improved ductility,while GGBS decreased porosity and increased the dry density of the samples,resulting in higher strength.The addition of SCMs also enhanced the water retention capacity and modified the pH of the samples.Microstructural analysis revealed that the hydrated magnesium carbonates precipitated in the carbonated samples provided better cementation effects than brucite formed during rMgO hydration.Moreover,incorporating SCMs reduced the overall global warming potential and energy demand of the rMgO-based systems.The biochar mixes demonstrated lower toxicity and energy consumption.Ultimately,the rMgO and biochar blend can serve as an environmentally friendly additive for soft soil stabilization and permanent fixation of significant amounts of CO_(2) in soils through mineral carbonation,potentially reducing environmental pollution while meeting urbanization needs. 展开更多
关键词 Dredged marine soil CO_(2)uptake Reactive magnesia biochar Ground granulated blast-furnace slag
下载PDF
Key Physical Factors Affecting Spatial-temporal Variation of Labile Organic Carbon Fractions by Biochar Driven in Mollisols Region of Northeast China
8
作者 Zhao Wei Liang Fangyuan +4 位作者 Liang Ying Zhao Hongrui Hao Shuai Wang Hongyan Wang Daqing 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期28-41,共14页
Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between phy... Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between physical properties and LOC fractions. A field positioning experiment was performed in Mollisols region of Northeast China to evaluate the influence of maize stalk biochar on the spatial distribution and temporal changes of physical properties and LOC fractions. Maize stalk biochar treatments included C1(1.5 kg·hm^(-2)), C2(3 kg·hm^(-2)), C3(15 kg·hm^(-2)), C4(30 kg·hm^(-2)), and CK(0). The results showed that maize stalk biochar increased soil water contents(SWC) and soil porosity(SP), but reduced bulk density(BD). Maize stalk biochar reduced dissolved organic carbon(DOC) contents in the 0-20 cm soil layer, ranging from 0.25 g·kg^(-1) to 0.31 g·kg^(-1) in harvest period, while increased in the 20-40 cm soil layer. In addition, the application of biochar had a significant impact on the spatial distribution and temporal change of SWC, BD, SP, DOC, hot-water extractable carbon(HWC), acid hydrolyzed organic carbon(AHC Ⅰ, Ⅱ), and readily oxidized organic carbon(ROC). High amounts of maize stalk biochar up-regulated the contents of soil organic carbon SOC, HWC, AHC Ⅰ, AHC Ⅱ, and ROC. In addition, SWC and SP were the key physical factors to affect LOC fractions. In conclusions, maize stalk biochar could improve physical properties, and then influence LOC fractions, and maize stalk biochar could be used as an organic amendment for restoring degraded soils governed by their rates of addition. 展开更多
关键词 maize stalk biochar labile organic carbon fraction Mollisols region soil physical property dissolved organic carbon
下载PDF
Interaction between Biochar and Algae on Problem Soil
9
作者 Tazeen Fatima Khan Abdullah Al Mamun Nipu 《Journal of Materials Science and Chemical Engineering》 2024年第1期56-68,共13页
An in-vitro experiment was conducted to assess the interaction between biochar and algae on a problem soil. Experiments were performed with and without algae to observe the effectiveness of algae for overcoming the ch... An in-vitro experiment was conducted to assess the interaction between biochar and algae on a problem soil. Experiments were performed with and without algae to observe the effectiveness of algae for overcoming the challenges posed by problem soils. At the end of incubation periods, the adsorption and desorption of phosphorus (P) on a problem soil vis-á-vis algal inoculation were determined. Our results showed that different types of biochars adsorbed different amounts of P suggesting that the source of biochar played a crucial role in determining its behavior towards P. Tannery waste biochar significantly adsorbed 147% and 35% more P compared to that of the chicken litter and orange peel biochars respectively. Significant reductions in adsorption were observed when the biochar was used in combination with the algae which could be due to the beneficial effects of algae leading to the amelioration of the problem soil. Adsorption was reduced to 34%, 24% and 20% for the orange peel biochar + algae, chicken litter biochar + algae and tannery waste biochar + algae, respectively compared to the corresponding biochars present as a single solid. Phosphorus (P) desorption was also reduced significantly in presence of algal inoculation. Overall our findings suggest that the application of algae along with biochar in the problem soil could reduce the adsorption of P which would influence the availability of P. 展开更多
关键词 biochar ALGAE Problem Soil INTERACTION PHOSPHORUS
下载PDF
Synthesis and Characterization of β-Cyclodextrin Modified Biochar Environmental Remediation Materials
10
作者 Qing Guo Xiao Wang +3 位作者 Wanke Chen Xiaoyan Wang Jing Yuan Qianfeng Zhang 《Journal of Materials Science and Chemical Engineering》 2024年第4期42-52,共11页
In this paper, biochar (BC) was used as raw material, activated by deionizing aqueous solution, NaCl solution, CA solution and HCl solution respectively. Epichlorohydrin (EPI) was used as crosslinking agent, and β-cy... In this paper, biochar (BC) was used as raw material, activated by deionizing aqueous solution, NaCl solution, CA solution and HCl solution respectively. Epichlorohydrin (EPI) was used as crosslinking agent, and β-cyclodextrin (β-CD) was used to modify biochar (BC). The prepared modified biochar materials were labeled with β-CDBC, β-CDBC-Na, β-CDBC-CA and β-CDBC-H, respectively. The infrared spectrum, X-ray diffractometer, scanning electron microscope and specific surface area of the four modified materials were tested. The results showed that the C-O stretching vibration peak at 1020 cm<sup>−</sup><sup>1</sup> of the modified materials was slightly offset compared with that of biochar. The characteristic absorption peaks of XRD pattern decrease obviously at 2θ = 26.7˚ and 29.5˚. It can be obviously observed on the electron microscope image that the surface is loaded or formed clathrates, and BET data and graphs also show that the specific surface area of the modified biochar is larger. Therefore, β-cyclodextrin successfully modified biochar and formed clathrates on the surface of biochar or was loaded in the pore structure of biochar, especially β-CDBC-CA achieved better modification effect. Because biochar and β-cyclodextrin raw materials are cheap, easy to prepare and green, and less prone to secondary pollution, it has a good advantage in environmental governance. 展开更多
关键词 biochar Β-CYCLODEXTRIN MODIFICATION CLATHRATE Green Environmental Protection
下载PDF
A functionalized activated carbon adsorbent prepared from waste amidoxime resin by modifying with H_(3)PO_(4) and ZnCl_(2) and its excellent Cr(Ⅵ)adsorption
11
作者 Chunlin He Yun Liu +6 位作者 Mingwei Qi Zunzhang Liu Yuezhou Wei Toyohisa Fujita Guifang Wang Shaojian Ma Wenchao Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期585-598,共14页
With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environmen... With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”. 展开更多
关键词 waste amidoxime resin mesoporous adsorbent H_(3)PO_(4)and ZnCl_(2)processing Cr(VI)adsorption electroplating wastewater
下载PDF
Optimization and Thermodynamic Studies of Lead (II) and Cadmium (II) Ions Removal from Water Using Musa acuminate Pseudo-Stem Biochar
12
作者 Daniel Nimusiima Irene Nalumansi +2 位作者 Paul Mukasa Denis Byamugisha Emmanuel Ntambi 《Green and Sustainable Chemistry》 2023年第4期254-268,共15页
We recently found out that water from the Ugandan stretch of the Kagera transboundary river (East Africa) is contaminated with lead (Pb<sup>2+</sup>) and cadmium (Cd<sup>2+</sup>) ions at level... We recently found out that water from the Ugandan stretch of the Kagera transboundary river (East Africa) is contaminated with lead (Pb<sup>2+</sup>) and cadmium (Cd<sup>2+</sup>) ions at levels that are above permissible limits in drinking water. Because lignocellulosic biomass-based adsorbents have been explored for the remediation of metal ions from water, this study investigated the potential of Musa acuminata pseudo-stem (MAPS) biochar for the remediation of Pb<sup>2+</sup> and Cd<sup>2+</sup> ions from water. Batch adsorption experiments were performed to optimize the adsorption conditions while the isotherms were analyzed using Freundlich and Langmuir models. Results showed that the maximum adsorption capacity at equilibrium was 769.23 mg/g and 588.23 mg/g for Pb<sup>2+</sup> and Cd<sup>2+</sup> ions, respectively. Langmuir isotherm model provided the best fit for the data, and it was favorable since all r<sup>2</sup> values (Cd<sup>2+</sup> = 0.9726 and Pb<sup>2+</sup> = 0.9592) were close to unity. Gibb’s free energy change was found to be negative for both metals, implying the feasibility of the adsorption process. Correspondingly, the enthalpy change was positive for both metal ions which revealed that the adsorption process was endothermic and it occurred randomly at the solid-liquid interface. These results suggested that biochar from MAPs could be utilized for the removal of Pb<sup>2+</sup> and Cd<sup>2+</sup> from polluted water in the Kagera transboundary river to make it suitable for domestic use. Further studies should consider chemical modification of the biochar as well as characterization to examine the chemical nature of the biochar. 展开更多
关键词 adsorbent biochar LIGNOCELLULOSE Heavy Metals Water Treatment
下载PDF
Trace nitrogen-doped hierarchical porous biochar nanospheres:Waste corn roots derived superior adsorbents for high concentration single and mixed organic dyes removal 被引量:2
13
作者 Lihua Wang Hongwei Li +4 位作者 Mingyue Li Liyun Zhang Heng Zhang Zi-Yu Liu Wancheng Zhu 《Nano Research》 SCIE EI CSCD 2023年第2期1846-1858,共13页
Seeking high performance adsorbents for highly efficient treatment of wastewater containing organic dyes has become increasingly imperative worldwide.Herein,with a specific surface area(SSA)of 2,745.4 m^(2)·g^(−1... Seeking high performance adsorbents for highly efficient treatment of wastewater containing organic dyes has become increasingly imperative worldwide.Herein,with a specific surface area(SSA)of 2,745.4 m^(2)·g^(−1),trace N-doped porous biochar nanospheres(NPBs)are derived for the first time from affluent waste corn roots,via a hydrothermal conversion followed by a mild calcined activation by K2CO3(KC)in the presence of low virulent melamine.Melamine acts as N source and synergistic activator for significant promotion in SSA,pore volume,and surface defects.The obtained NPBs(CHC-0.5N-4KC-900)are confirmed as superior adsorbents for removal of organic dyes rhodamine B(RhB,qm=1,630.7 mg·g^(−1))and Congo red(CR,qm=1,766.2 mg·g^(−1))as well as their mixtures,within not only a low(<50 mg·L^(−1))but also a high(>50,esp.250–1500 mg·L^(−1))concentration range.The values for qm are far beyond commercially activated carbon(AC)as well as most reported biomass derived carbons,undoubtedly revealing the NPBs as great promising candidate adsorbents for disposal of real industrial wastewater.In addition,the adsorption of RhB is fitted by Langmuir,Freundlich,Temkin,and Dubinin–Radushkevich isotherm models.The kinetic analysis indicates that the adsorption before equilibrium conforms to the pseudo-second-order model,and the hydrogen bonding,electrostatic attraction,and esp.π–πinteraction have contributed to the superior adsorption performance of the NPBs. 展开更多
关键词 BIOMASS corn roots N-doped carbons biochar organic dyes adsorption
原文传递
响应面法优化制备La-Biochar复合材料及其对As(Ⅲ)的吸附研究 被引量:1
14
作者 姜沛汶 李晗晟 +2 位作者 邓天天 刘千源 马超 《河南理工大学学报(自然科学版)》 CAS 北大核心 2023年第1期76-86,共11页
为优化La-Biochar复合材料(La-B)制备工艺,以玉米秸秆和氯化镧为原料,As(Ⅲ)吸附量和去除率为响应指标,采用Box-Behnken Design(BBD)响应面法研究制备条件,系统考察吸附剂投加量和pH对吸附效果影响,并探究其吸附动力学和吸附热力学特性... 为优化La-Biochar复合材料(La-B)制备工艺,以玉米秸秆和氯化镧为原料,As(Ⅲ)吸附量和去除率为响应指标,采用Box-Behnken Design(BBD)响应面法研究制备条件,系统考察吸附剂投加量和pH对吸附效果影响,并探究其吸附动力学和吸附热力学特性。结果表明:(1)La-B最佳制备条件为炭化时间120 min,物料比30%,炭化温度750℃,NaOH添加量0.5 g;(2)pH=10,吸附剂用量0.1 g时,La-B对20 mg/L的As(Ⅲ)溶液吸附效果最佳,此时As(Ⅲ)去除率达99.01%;(3)As(Ⅲ)等温吸附过程可用Freundlich模型描述,吸附过程遵循准二级扩散动力学模型;(4)La-B对As(Ⅲ)的吸附在高温条件下为自发的吸热反应过程。 展开更多
关键词 La-biochar复合材料 响应面法 As(Ⅲ) 吸附
下载PDF
Decontamination of Cr(Ⅵ) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals 被引量:1
15
作者 Yuhan Zhu Jia Wei Jun Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期97-103,共7页
Biochar is a well-known material for pollutant removal owing to its low cost and rich surface functionality. A kind of highly active substance, called environmentally persistent free radicals(EPFRs), can be produced i... Biochar is a well-known material for pollutant removal owing to its low cost and rich surface functionality. A kind of highly active substance, called environmentally persistent free radicals(EPFRs), can be produced in the preparation process of biochar, playing an important role in the removal of pollutants.In this study, sludge-derived biochars(SBC_(120) and SBC_(270)) were prepared by the hydrothermal carbonization under two temperatures(120℃ and 270℃) to investigate their removal abilities of Cr(Ⅵ). The maximum removal amounts of Cr(Ⅵ) by SBC_(120) and SBC_(270) were 16.58 and 22.93 mg·g^(-1), respectively. It was further revealed that the appearance of Cr(Ⅲ), as a result of EPFRs on sludge-derived biochar(SBC) transferred electrons to Cr(Ⅵ) in neutral solutions. That is to say, oxygen-centered(O-centered) EPFRs on SBC_(120) and carbon-centered(C-centered) EPFRs on SBC_(270) all could be used as electron donors to Cr(Ⅵ) to make it become Cr(Ⅲ). This study not only provides a theoretical basis for the mechanism of pollutants removal by sludge-derived biochar but also offers a new perspective on the direct effect of EPFRs on pollutants. 展开更多
关键词 Sludge-derived biochar Environmentally persistent free radicals Chromium Removal Reduction
下载PDF
Effects of biochar-amended alkali-activated slag on the stabilization of coral sand in coastal areas 被引量:1
16
作者 Xiaole Han Ningjun Jiang +4 位作者 Fei Jin Krishna RReddy Yijie Wang Kaiwei Liu Yanjun Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期760-772,共13页
Coral sand is widely encountered in coastal areas of tropical and subtropical regions.Compared with silica sand,it usually exhibits weaker performance from the perspective of engineering geology.To improve the geomech... Coral sand is widely encountered in coastal areas of tropical and subtropical regions.Compared with silica sand,it usually exhibits weaker performance from the perspective of engineering geology.To improve the geomechanical performance of coral sand and meet the requirement of foundation construction in coastal areas,a novel alkali activation-based sustainable binder was developed.The alkaliactivated slag(AAS)binder material was composed of ground granulated blast-furnace slag(GGBS)and hydrated lime with the amendment of biochar,an agricultural waste-derived material.The biocharamended AAS stabilized coral sand was subjected to a series of laboratory tests to determine its mechanical,physicochemical,and microstructural characteristics.Results show that adding a moderate amount of biochar in AAS could improve soil strength,elastic modulus,and water holding capacity by up to 20%,70%,and 30%,respectively.Moreover,the addition of biochar in AAS had a marginal effect on the sulfate resistance of the stabilized sand,especially at high biochar content.However,the resistance of the AAS stabilized sand to wet-dry cycles slightly deteriorated with the addition of biochar.Based on these observations,a conceptual model showing biochar-AAS-sand interactions was proposed,in which biochar served as an internal curing agent,micro-reinforcer,and mechanically weak point. 展开更多
关键词 Coral sand Soil stabilization biochar Alkali activation
下载PDF
Biochar’s Electrochemical Properties Impact on Methanogenesis: Ruminal vs. Soil Processes
17
作者 Anna Kolganova Rattan Lal Jeffrey Firkins 《Journal of Agricultural Chemistry and Environment》 CAS 2023年第1期28-43,共16页
The chemical composition of biochar and the pyrolysis temperature, under which biochar was produced, determine its electrochemical properties. Electrical conductivity, pseudo-capacitance, and double layer capacitance ... The chemical composition of biochar and the pyrolysis temperature, under which biochar was produced, determine its electrochemical properties. Electrical conductivity, pseudo-capacitance, and double layer capacitance are the three main electrochemical properties of biochar. Due to the electrical conductivity biochar is able to interfere with the electrons flow and play a dual role of an electron donor or an electron acceptor. The average conductivity of biochar is 229.20 S/m. Pseudocapacitance of biochar lets it serve as a hydrogen sink, taking up the hydrogen produced by protozoa and preventing it from participating in methane-producing reactions in the rumen environment. The average value of biochar’s pseudocapacitance is 228 F&middot;g<sup>-1</sup>. Positive and negative charges get stored due to the absorption of ions onto the carbon surface, which happens because of the existence of double layer capacitance as one of biochar’s electrochemical properties. Biochar’s double layer capacitance values can reach the point of 110.8 F&middot;g<sup>-1</sup>. The electrochemical properties of biochar are directly co-dependent with its redox potential and pH. Electrical conductivity, pseudocapacitance, and double layer capacitance can significantly influence biochemical processes in the rumen and, thus, need to be studied practically. 展开更多
关键词 biochar RUMINANTS METHANOGENESIS SOIL
下载PDF
Naturally Nitrogen-Doped Biochar Made from End-of-Life Wood Panels for SO_(2) Gas Depollution
18
作者 Hamdi Hachicha Mamadou Dia +3 位作者 Hassine Bouafif Ahmed Koubaa Mohamed Khlif Flavia Lega Braghiroli 《Journal of Renewable Materials》 EI 2023年第11期3807-3829,共23页
Reconstituted wood panels have several advantages in terms of ease of manufacturing,but their shorter life span results in a huge amount of reconstituted wood panels being discarded in sorting centers yearly.Currently... Reconstituted wood panels have several advantages in terms of ease of manufacturing,but their shorter life span results in a huge amount of reconstituted wood panels being discarded in sorting centers yearly.Currently,the most common approach for dealing with this waste is incineration.In this study,reconstituted wood panels were converted into activated biochar through a two-step thermochemical process:(i)biochar production using pilot scale fast pyrolysis at 250 kg/h and 450℃;and(ii)a physical activation at three temperatures(750℃,850℃ and 950℃)using an in-house activation furnace(1 kg/h).Results showed that the first stage removed about 66% of the nitrogen from the wood panels in the form of NO,NH3,and trimethylamine,which were detected in small amounts compared to emitted CO_(2).Compared to other types of thermochemical conversion methods(e.g.,slow pyrolysis),isocyanic acid and hydrogen cyanide were not detected in this study.The second stage produced activated biochar with a specific surface area of up to 865 m^(2)/g at 950℃.The volatile gases generated during activation were predominantly composed of toluene and benzene.This two-step process resulted in nitrogen-rich carbon in the form of pyrrolic and pyridinic nitrogen.Activated biochars were then evaluated for their SO_(2) retention performance and showed an excellent adsorption capacity of up to 2140 mg/g compared to 65 mg/g for a commercial activated carbon(889 m^(2)/g).End-of-life reconstituted wood panels and SO_(2) gas are problematic issues in Canada where the economy largely revolves around forestry and mining industries. 展开更多
关键词 End-of-life wood panels PYROLYSIS activation biochar and activated biochar N-doped carbons SO_(2)removal
下载PDF
Improving the electrocatalytic activity of Fe,N co-doped biochar for polysulfide by regulation of N-C and Fe-N-C electronic configurations
19
作者 Jingchun Sun Jindiao Guan +4 位作者 Suqing Zhou Jiewei Ouyang Nan Zhou Chunxia Ding Mei’e Zhong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2421-2431,共11页
The conversion of agricultural residual biomass into biochar as a sulfur host material for Li-S batteries is a promising approach to alleviate the greenhouse effect and realize waste resource reutilization.However,the... The conversion of agricultural residual biomass into biochar as a sulfur host material for Li-S batteries is a promising approach to alleviate the greenhouse effect and realize waste resource reutilization.However,the large-scale application of pristine biochar is hindered by its low electrical conductivity and limited electrocatalytic sites.This paper addressed these challenges via the construction of Fe-N co-doped biochar(Fe-NOPC)through the copyrolysis of sesame seeds shell and ferric sodium ethylenediaminetetraacetic acid(NaFeEDTA).During the synthesis process,NaFeEDTA was used as an extra carbon resource to regulate the chemical environment of N doping,which resulted in the production of high contents of graphitic,pyridinic,and pyrrolic N and Fe-Nx bonds.When the resulting Fe-NOPC was used as a sulfur host,the pyridinic and pyrrolic N would adjust the surface electron structure of biochar to accelerate the electron/ion transport,and the electropositive graphitic N could be combined with sulfur-related species via electrostatic attraction.Fe-Nx could also promote the redox reaction of lithium polysulfides due to the strong Li-N and S-Fe bonds.Benefiting from these advantages,the resultant Fe-NOPC/S cathode with a sulfur loading of 3.8 mg·cm^(-2)delivered an areal capacity of 4.45 mAh·cm^(-2)at 0.1C and retained a capacity of 3.45 mAh·cm^(-2)at 1C.Thus,this cathode material holds enormous potential for achieving energy-dense Li-S batteries. 展开更多
关键词 sesame seeds shell COPYROLYSIS biochar Fe-N co-doping Li-S batteries
下载PDF
Role of intrinsic defects on carbon adsorbent for enhanced removal of Hg^(2+)in aqueous solution
20
作者 Liu He Yiyang Qiu +7 位作者 Chu Yao Guojun Lan Na Li Huacong Zhou Quansheng Liu Xiucheng Sun Zaizhe Cheng Ying Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期129-139,共11页
Carbon is a normally used adsorbent for removal of heavy metal ion in aqueous solutions,but the efficient adsorbent needs intensive modification by heteroatom doped or supported noble metals that cause severe pollutio... Carbon is a normally used adsorbent for removal of heavy metal ion in aqueous solutions,but the efficient adsorbent needs intensive modification by heteroatom doped or supported noble metals that cause severe pollution and easy leaching of active components during use.In this paper,the role of intrinsic defects on Hg^(2+)adsorption for carbon adsorbent was investigated.The maximum adsorbing capacity of defectrich carbon has been improved up to 433 mg·g^(-1)which is comparable to most of the modified carbon adsorbents via supported metal chloride or noble metal components.The basicity is increased with the content of defective sites and the strong chemical bonding can be formed via electron transformation between the defect sites with adsorbed Hg^(2+).The present study gives a direction to explore cheap and easily scale-up high-performance mercury adsorbents by simply tuning the intrinsic defective structure of carbon without the necessity to support metal or other organic compounds. 展开更多
关键词 Mercury-ion removal Adsorption Carbon adsorbent Defect sites
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部